

Abstract— The development of a vision system to aid the
autonomous navigation of an unmanned helicopter, primarily
based on inertial sensors and GPS data, is presented. An
unmanned helicopter has been equipped with appropriate
sensors and a vision system fitted on a custom pan-tilt
mechanism. Robust software, based on the Open Computer
Vision Library (OpenCV), has been developed for handling
images and video from a camera. Our implementation involves
real time object recognition, histogram matching for real time
video streaming, pattern matching and object tracking.
Software implemented in C++ interacts with Matlab in order to
aid the autonomous navigation of the helicopter.

I. INTRODUCTION
HE Scale Invariant Feature Transform (SIFT) is an
algorithm to detect feature points in images, commonly

called keys or keypoints in the SIFT framework. The
primary goal of the SIFT algorithm is object recognition.
Harnessing the Gaussian difference of the images in
different scales the SIFT algorithm can ensure scale
invariance; by assigning one or more orientations to each
keypoint location based on local image gradient directions
can provide rotation invariance and through other techniques
can provide features that are translation invariant, which
could also be partially invariant to illumination changes and
affine or 3D projection [1]. The application of SIFT
algorithm on an image has as outcome a keypoint descriptor
for representing points of interests in order to be matched
against a database. The algorithm is considered to be very
robust and keypoints have been invariant across a substantial
range of affine distortion, addition of noise, and change in
illumination [1].

SIFT has been widely accepted in the community of
machine vision mainly for its repeatability, distinctiveness,
and robustness. SIFT has also been widely utilized by
Unmanned Aerial (UAV) and Ground (UGV) vehicles
research teams [2].

This work was supported in part from the 03ED365 research project,

implemented within the framework of the “Reinforcement Programme of
Human Research Manpower” (PENED) and co-financed by National and
Community Funds (75% from E.U.-European Social Fund and 25% from
the Greek Ministry of Development-General Secretariat of Research and
Technology).

Diomidis Katzourakis was with the Technical University of Crete,
Intelligent Systems & Robotics Laboratory, 73100, Chania, Greece. He is
now with TU Delft, Biomechanical Engineering, 2628 CD, The Netherlands
(e-mail: d.katzourakis@tudelft.nl).

Nikos I. Vitzilaios and Nikos C. Tsourveloudis are with the Technical
University of Crete, Intelligent Systems & Robotics Laboratory, 73100,
Chania, Greece (e-mail: {vitzilaios, nikost}@dpem.tuc.gr).

Lin et al. [4] have used the SIFT algorithm for the
registration of consecutive images taken from a UAV into a
mosaic. They tried many kinds of features but concluded
that the SIFT features, due to the properties mentioned
earlier, would be the most appropriate solution for the
concept. The SIFT algorithm, has also been used by
Forrstner et al. [5] for online geocoding of large scale
images using a video camera on a UAV. Abdallah et al. [8]
used SIFT in a vision-inertial SLAM system for UGV, using
a camera for the detection of landmarks on the ground and
an IMU for dead-reckoning. They estimate the robot motion
by dead-reckoning information in an attempt to predict
future positions of the SIFT features during navigation.
SIFT feature tracking has also been used by Templeton et al.
[6] for the evaluation of their vision-based terrain mapping
and analysis system for an unmanned helicopter.

Another scheme for feature extractions is the Speeded Up
Robust Features (SURF), a high performance algorithm
which provides interest point detector and descriptor
invariant in scale and rotation [9]. SURF is considered to be
as thriving as SIFT and yet can be computed and compared
much faster [9]. The software for the SURF algorithm is
provided in [10].

A similar provision to ours for UAV machine vision using
SIFT, has been built in [2] and [3], using the same software
we did, as a basis for developing the vision system [11].
Their research aims on techniques for autonomous flight
using mainly visual input source, since as they assert, the
GPS is responsible for guiding the UAV to the vicinity of
the desired target. From that point, vision is the main source
for piloting. Because their implementation resembles to ours
we will collate it along with ours.

II. HARDWARE IMPLEMENTATION
An unmanned helicopter has been developed for

experimental use and testing on autonomous navigation
techniques (Fig. 1). The unmanned helicopter is equipped
with all appropriate sensors for autonomous navigation
(Inertial Measurement Unit, GPS receiver, RC servo
driver\controller, CPU unit, Solid State Disk) according to
our previous experience on the field [12]. A custom made
pan-tilt vision system is mounted on the helicopter.

The pan-tilt vision system consists of a webcam and two
mini servos, controlled through a custom built servo
controller based upon an ATmega8 AVR microcontroller
from ATMEL (Fig. 2). The system interacts with the

Vision Aided Navigation for Unmanned Helicopters
Diomidis Katzourakis, Nikos I. Vitzilaios, and Nikos C. Tsourveloudis

T

17th Mediterranean Conference on Control & Automation
Makedonia Palace, Thessaloniki, Greece
June 24 - 26, 2009

978-1-4244-4685-8/09/$25.00 ©2009 IEEE 1245

computer with two USB wires; the first for the webcam and
the second for the servo controller. The microcontroller
communicates with apc, through a handy USB to serial chip
from FTDI [1] that provides the necessary voltage supply
for the system.

Fig. 1. Unmanned helicopter equipped with vision system.

Fig. 2. Servo controller for the camera pan/tilt movement.

The servo controller has been built for reading (and

writing) raw data (bytes or characters) to the computer. The
writing has to do with the fact that the controller also serves
the role of an analog to digital converter (Fig. 2). We used
raw data against ASCII for higher bandwidth. The serial
protocol that has been built is shown at Fig. 3. It is special
character (ASCII) driven. For our case the special character
was the raw value of ‘$’(which is the 36decimal). The
characters following a special character are: the start of
frame ‘s’, data indicating zero value which is the character
‘0’ and the character notifying that the original data has the
value of the special character (36decimal) which is the ‘^’.
That is:
 to start a new data frame ‘$’,‘s’
 send a zero value for data ‘$’, ‘0’
 finally in case we want to send the raw decimal value of

the special character (‘$’=36) ‘$’, ‘^’.
The controller accepts byte data as mentioned above.

Every byte is a decimal number which multiplied by the
time quantum of 16usec, representing the high voltage for
the PWM signal. For example, if a byte with the decimal
number 93 is received, it will produce a PWM signal

93x16usec= 1.5msec for the high pulse and 18.5msec for the
low pulse.

III. SOFTWARE IMPLEMENTATION
Our implementation is based upon the Open Computer

Vision Library (OpenCV) [14] for real time computer
vision. OpenCV is an open source computer vision library in
C/C++, independent from the operating system and
hardware, is optimized and is suitable for real time
applications [15]. The software is written in C++. The
concept of the project is to aid a UAV’s guidance based on
inertial sensors and GPS with machine vision. More
specifically, we have implemented real time object
recognition, using the SIFT algorithm [1] and histogram
matching for the captured frame. The Scale Invariant
Feature Transform (SIFT) is an algorithm to detect feature
points in images. It uses a class of scale, rotation and
translation invariant features, which could also be partially
invariant to illumination changes and affine or 3D projection
[1]. In our case, these features are used for matching
between a still image (acting as pattern) and a captured
video frame, performing object detection and computing
their between geometrical transformation. Our program is
based upon an implementation of the SIFT algorithm [11].
The flow chart of the program is illustrated at Fig. 4.

If the captured image surpasses a user defined threshold
of the minimum “SIFT features”, the program tries to match
the SIFT keypoints from the pattern we are searching with
keypoints from the capture frame. This identification of the
most similar keys is considered to be high in complexity
[16], thus a modified version of the k-d tree algorithm is
used, called the best-bin-first search method proposed by
Beis & Lowe [17], laconic in computation resources though
with high effectuality the nearest neighbors.

When the SIFT keys are matched, the program finds the
pattern’s approximate two nearest neighbors in the k-d tree.
If they satisfy a user-defined threshold on squared ratio of
distances, the RANSAC [15] algorithm is executed for the
calculation of a best-fit image transform between the
corresponding SIFT keys for the pattern and the captured
frame.

The RANSAC algorithm uses the GNU Scientific Library
(GSL), which is a collection of routines for solving
computing problems concerning linear algebra, statistics,
probability, differentiation, integration etc. RANSAC
algorithm is used for extracting geometric information
between matching keypoints and tries to reject the outliers
from the sensory data through an iterative selection of a
random subset from the original points. Those are used for
obtaining a model which is evaluated for its consistency
through the whole original set of points. The process is
iteratively executed until it finds a parametric model that
best fits the original data points.

1246

Was the
previous_tx_char

==’$’

Yes

Switch
(TX_read)

Is
TX_read<TX_buff

er_length;

Yes

IsTX_read>=
TX_buffer_length

Yes

Return

No

No

No

Send new
character though

serial port

Is send_data==1

Yes No

Is tx_temp
==’$’

Yes No

Is tx_temp
==0

Yes No

Case 1:
tx_temp=data1
Case 2:
tx_temp=data2
…
Case N:
tx_temp=dataN
default: tx_temp=‘*’

Write to serial port
UDR=previous_tx_code;

And Set Variables
tx_temp='a';

previous_tx_char=previous_tx_code;

Then Set Variables
tx_temp= ‘$’;
previous_tx_code=‘0’;

Then Set Variables
send_data=0;
TX_read=1;

previous_tx_char='a';
Write to serial port

UDR=‘$’;

Set Variables
previous_tx_char=tx_temp;

TX_read++;

Write to serial port
UDR=tx_temp;

Then Set Variables
tx_temp= ‘$’;
previous_tx_code=‘^’;

TX_read=1;
send_data=1;

Fig. 3. Special character driven read (left) and write (right) from the serial protocol for both AVR and PC.

Continuing the presentation after our RANSAC detour,

the calculation of the SIFT features has a high computational
cost, so that in order to have a smooth tracking flow in the
object recognition-tracking task, between two consecutively
SIFT identifications, we use the Lucas Kanade (LK) optical
flow algorithm [19], for tracking the keypoints from the last
identified object. The program is able to search for only one
specific pattern each time and can be programmed to search
in a rotary basis the patterns we want. The pattern we search
can be changed dynamically by the GUI for the user itself or
automatically by MATLAB responsible for the flying of the
UAV system.

Searching for SIFT features within a captured frame is
time consuming. Thus, in order not to have discontinuity in
the object recognition-tracking task, we have used the LK
optical flow algorithm [19], for tracking the SIFT keypoints
from the captured frame, which were identified as common
with the pattern, in correlation with the perspective
transformation of the pattern’s edges (top_left, top_right,
bottom_left and bottom_right) on the captured frame. When
we have a successful match from the execution of RANSAC
on the matched keypoints between the captured frame and
the pattern, we store for each keypoint its coordinates and its
absolute distance between all four edges (top_left, top_right,
bottom_left and bottom_right). When a new captured frame
arrives, the LK algorithm locates the new coordinates for the
matched keypoints based on the last known position that we

have stored. Utilizing the known edges of the pattern at the
grabbed frame the program does the opposite action from
the previous act; it calculates the new edges using the
absolute distance from the edges from the previous
keypoints and the ones tracked the LK algorithm. It then
recalculates the absolute distance between each tracked
keypoint and the freshly calculated edges. This is illustrated
on a flowchart at Fig. 5. For the LK task, we used the
available LK implementation provided by OpenCV.

The routine responsible for finding the SIFT features on
the captured frame is executed on a different thread than the
one running the main loop of the programme. Until the
aforementioned thread is executed, we use the tracked points
from the LK in order to determine the position of the edges
of the pattern on the captured frame (Fig. 5).

In order to determine how an unknown environment
resembles to known patterns, the captured frame is
segmented into small overlapping squares of pixels, which
are correlated along all the patterns from the histogram pool.
The pattern with the highest correlation is assigned to that
specific square. By detecting blobs we might obtain regions
of interest for further processing. These regions could signal
the presence of objects or parts of objects in the captured
frame. For example, a blob of patterns from local area’s
trees that inside contain a blob of patterns from tarmac could
represent a potential site for emergency landing.

1247

Program
Initiated

Open
MATLAB

engine and
return

handle.

Open Serial
Port and

return
handle.

Find the
SIFT

features for
the patterns

in search
and load the

in RAM

Write to Serial
the desired

position for the
servos

main loop

Grab frame from
webcam and
resize it to
320x240

Divide the frame
into overlapping
squares of 20

pixels and assign
each square the

histogram pattern
from the histogram
pattern pool that
correlates most

Saw pattern
 within 3 executions

of SIFT?

NO

Consider pattern
Lost

New
coordinates
from SIFT

arrived

Store the
common points
for LK optical

flow

YES

NO

Use LK optical
flow and find the

last stored
common points

in the new
captured frame

Store tracked the
common points

for next LK
optical flow

Find the new
edges pattern as
a weighted sum

from the last
know absolute

distances for the
common points

for(i=0;i<common_features_found;i++){
distance[i][0].x=top_left_x-points_2[i].x;
distance[i][0].y=top_left_y-points_2[psaje].y;

distance[i][1].x=top_right_x-points_2[i].x;
distance[i][1].y=top_right_y-points_2[i].y;
…
}

Find the absolute
distances of the
tracked features
and the freshly

calculated edges
of tracked object

YES

Thread for finding
SIFT features

executed?

YES

Are the SIFT
keypoints found

enough?

YES

Build a k-d tree
database from
keypoints in an

array.

Find the common
features (points)

between the pattern
and the captured

frame and store them
in an array (Hess).

Calculate a best-fit
image transform

from image feature
correspondences
using RANSAC

(Hess)

Find the affine
projection of the

new edges
(top_left,top_rig

ht,etc) of the
pattern at the

captured frame.

Fnd the absolute
distances of the
tracked features
and the freshly

calculated edges
of tracked object

Execute new
thread for SIFT

with the captured
frame.

Interact with
Matalb

NO

Consider pattern
Lost

Good
correspondenc

e?

YES

NO

If told so, track
the target.

NO

Fig. 4. Flow chart of the program.

Finally, the camera system can track a locked pattern

utilizing its pan-tilt capabilities. The program interacts with
Matlab, though the Matlab engine. The program writes the
fused data into the Matlab’s workspace and read the
commands, in exactly the same manner, the user of the
program would manually do.

As mentioned earlier similar provision for machine vision
has also been built in [2] and [3], using the same software
we did as a basis for developing the vision system. They
have harnessed also SIFT for object recognition on UAVs.
Their motivation is to incorporate vision systems in UAVs
in order to increase their navigation capabilities. They state
that they desire to control the position of the helicopter
based on visual data or in a characteristics extracted from
the image. Also as they assert, their system could be
possibly used for hovering of the helicopter and track
moving objects using their Pan –Tilt platform. There are two
primary differences in our implementations. Firstly, their
tracking system, which relies on SIFT for recognition and is
computational demanding (it is based upon the same
implementation [11]), is not clarified if it can work on a real
time basis like ours.

Secondly, they have adopted a scheme for local
processing, in order to increase their speed. This scheme is

to select an area of interest in their image for processing. If
they don’t have a match they increase their area of interest
and they process the bigger area. Their approach is
interesting and in combination with ours could be very
fruitful.

IV. TARGET TRACKING
One simple operation for our vision system is target

tracking taking advantage the pan-tilt capabilities of our
system. The tracking routine embedded into the C++
program is very in simple but has the potentials to become
more ingenious through a fuzzy controller we are planning
to built, that will move the camera in a more predictive
fashion, using the fused information from the visual system
and the inertial data from the helicopter. A pseudo code of
the routine is shown at Fig. 6. The aim of this routine is to
keep the estimated center of the tracked object within a
specified margin from the center of the captured image.
Something that we discovered after experimenting is that it
is better to change the camera’s position as little as possible
in order to move the camera towards the estimated center for
the pattern. This is because, in abrupt change of position, the
LK kanade algorithm wasn’t able to keep in track the
keypoints, so the target would be lost either way.

1248

Fig. 5. Lucas Kanade optical flows for smooth tracking between consecutive SIFT recognitions.

Fig. 6. Track target.

An application of our implementation is shown in Fig. 7.

Four snapshots are presented from a test flight. The
helicopter takes off and flies across a building surrounded
by plain nature. The image of the black door of the building
is inserted to our software in order to be used as the
reference image. As it can be seen in the snapshots software
recognizes in real time the black door and highlights it (pink
rectangle), while the helicopter flies around the building.
The coordinates of the tracked object in the image pass in
the Matlab engine in order to be used in the navigation of
the helicopter. These coordinates are also used to
appropriately guide the pan-tilt mechanism in order to
continuously track the object while the helicopter flies and
the tracked image is still inside the picture.

Object tracking looks to work very well in this test flight,
although we noticed a lot of vibration in the camera,
becoming from the helicopter engine. Calculations and
object tracking work really fast.

V. CONCLUSION
A vision system to aid the navigation of an unmanned

helicopter is presented in this work. This system, including a
web camera mounted on a custom made pan tilt mechanism,
is loaded on an unmanned helicopter and software has been
implemented, based on Open Computer Vision Library
(OpenCV), for various applications such as real time object
recognition, pattern matching and object tracking. This
system interacts with the helicopter control system using the
Matlab engine, aiding helicopter’s navigation. Preliminary
test flights show that this system is promising and can be
developed in order to assist the helicopter in performing
various applications.

1249

Fig. 7. Real time tracking onboard helicopter

REFERENCES
[1] David G. Lowe, "Distinctive image features from scale-invariant

keypoints," International Journal of Computer Vision, vol. 60, no. 2,
pp. 91-110, 2004.

[2] I.F. Mondragon, P. Campoy, J.F. Correa, L.Mejias, “Visual Model
Feature Tracking for UAV Control,” in IEEE International
Symposium on Intelligent Signal Processing, 2007.

[3] Pascual Campoy, Juan F. Correa, Ivan Mondragón, Carol Martínez,
Miguel Olivares, Luis Mejías, Jorge Artied, “Computer Vision
Onboard UAVs for Civilian Tasks,” Journal of Intelligent and Robotic
Systems, vol. 54, no. 1-3, pp. 105-135, 2009.

[4] Yuping Lin, Qian Yu, Gerard Medioni, “Map-Enhanced UAV Image
Sequence Registration,” in Proceedings of the 8th IEEE Workshop on
Applications of Computer Vision, 2007.

[5] Wolfgang Forstner and Richard Steffen, “Online Geocoding and
Evaluation of Large Scale Imagery Without GPS,” in
Photogrammetric Week, 2007.

[6] Todd Templeton, David H. Shim, Christopher Geyer, Shankar S.
Sastry, “Autonomous Vision-based Landing and Terrain Mapping
Using an MPC-controlled Unmanned Rotorcraft,” in IEEE
International Conference on Robotics and Automation, 2007.

[7] Wei Zhang and Jana Kosecka “A new inlier identification scheme for
robust estimation problems,” in Robotics: Science and Systems II,
2006.

[8] Samer M. Abdallah, Daniel C. Asmar and John S. Zelek, “A
Benchmark for Outdoor Vision SLAM Systems,” Journal of Field
Robotics, vol. 24, no. 1-2, pp. 145-165, 2007.

[9] Herbert Bay, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up
Robust Features", in Proceedings of the 9th European Conference on
Computer Vision, May 2006.

[10] SURF. Available: http://www.vision.ee.ethz.ch/~surf/
[11] Robb Hess, http://web.engr.oregonstate.edu/~hess/
[12] Nikos I. Vitzilaios and Nikos C. Tsourveloudis, “An Experimental

Test Bed for Small Unmanned Helicopters,” Journal of Intelligent and
Robotic Systems, vol. 54, no. 5, pp. 769-794, 2009.

[13] FTDI, Future Technologies International, http://www.ftdichip.com/
[14] Open Computer Vision Library (OpenCV). Available:

http://opencvlibrary.sourceforge.net/
[15] Gady Agam, ”Introduction to programming with OpenCV”, 2006.

Available: http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-
intro/index.html

[16] David G. Lowe, "Object recognition from local scale-invariant
features," in International Conference on Computer Vision, pp. 1150-
1157, Corfu, Greece, 1999.

[17] Jeff Beis and David G. Lowe, “Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces,” in Conference
on Computer Vision and Pattern Recognition, pp. 1000–1006, Puerto
Rico, 1997.

[18] Martin A. Fischler and Robert C. Bolles, “Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381-395, 1981.

[19] B.D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. of the 7th IJCAI, pp.
674–679, Vancouver, Canada, 1981.

[20] GNU Scientific Library (GSL), Available: http://gnuwin32.
sourceforge.net/packages/gsl.htm

1250

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program at a Glance
	Table of Contents

