

Intelligent Systems & Robotics Laboratory

UAS FOR FIRE MANAGEMENT: STATE-OF-THE-ART, EARLY WARNING AND TRENDS

Nikos I. Vitzilaios and Nikos C. Tsourveloudis Intelligent Systems & Robotics Laboratory Technical University of Crete Chania, Greece

"UAS For Fire Management: State-of-the-Art, Early Warning and Trends" MED 2009 Workshop on UAS Civilian Applications Thessaloniki, Greece, June 23, 2009

Presentation Outline

Problem Statement

- Forest fires: constant threat to ecological systems, infrastructure and human lives
- Prognoses: half forests by the year 2030
- Annual vegetation destruction by fires
 - Europe: up to 10.000 km²
 - Russia and North America: up to 100.000 km²
- ✤ 20% of CO₂ emissions into the atmosphere are caused by fires
- Once fire fighters on the scene, the first important task is reconnaissance
 - Data collection and orientation
 - Define tasks associated with the saving of lives and the extinguishing of fire
 - Safe implementation
- Problems associated with the reconnaissance of forest fires
 - Fire covers such a large area that reconnaissance requires touring around the entire affected area
 - Perimeter monitoring hindered by natural conditions, terrain topology and vegetation
 - Circumambulating an area with a radius of 300m involves a distance of almost 2km
 - If commander of fire-fighting operations is at the scene, he is too close to be able to manage the environment. Need for many commanders to view various areas (subjective assessment)
 - The extinction of forest fires is a protracted process in time, immediate area reconnaissance needed

Fire Management

- Air reconnaissance
 - Offers an overview of several thousand hectares of forest
 - Allows intervention measures to be co-ordinated
 - Objectivity in ranking the individual sites in relation to the others
 - Elimination of terrain topology effects that hinder visual access
 - Benefits to smaller fires too
 - Relatively low cost if visual inspection by staff is replaced by acquisition of image data
- Unmanned aircraft vs Manned aircraft
 - High altitude, above and out of the path of air-tankers and helicopters
 - Almost real-time broadcasting of high quality infrared images
 - Continuous operation (refueling after 10 hours of work)
 - Operation at night while other firefighting aircraft are grounded
 - Low cost
 - Ground teleoperation or autonomous operation
 - Great payload capabilities (various systems can be placed onboard)

Unmanned Aircraft Systems (UAS) for Fire Management

Development

- Industries (General Atomics, EADS etc)
 - **Federal Organizations (NASA, NOAA etc)**
- ✓ Academia (Universities, Research Institutes etc)

Types ✓ High pa ✓ Precisi ✓ Increas ✓ Low-altitude ✓ Low op ✓ Relative	on instruments, accurate detection
--	------------------------------------

"UAS For Fire Management: State-of-the-Art, Early Warning and Trends" MED 2009 Workshop on UAS Civilian Applications Thessaloniki, Greece, June 23, 2009

Current Applications

UVS International, November 2007

Altair UAS

- High-altitude long-endurance UAS
- Altitude up to 13-15km
- Endurance up to 20 hours with at least 300kg payload
- Parts
 - Autonomous aircraft (26m wingspan, 11m fuselage length) based on Predator B
 - Redundant control systems
 - High-speed satellite and radio communication
 - Ground based pilots and sensor operators
- Project development partners
 - US National Oceanic and Atmospheric Administration (NOAA)
 - General Atomics Aeronautical System
 - NASA
- Development: 2003-2004
- Test flights: 2005-2006
- First mission: October 2006 (Esperanza Fire)

"UAS For Fire Management: State-of-the-Art, Early Warning and Trends" MED 2009 Workshop on UAS Civilian Applications Thessaloniki, Greece, June 23, 2009

Altair UAS on duty

Esperanza fire (Riverside County, USA)

- 34 homes destroyed
- More than 40.0000 acres burned
- 5 USFS firefighters dead

Altair Operation

- 43.000 feet altitude
- 16-hour flight (day and night)
- Delivered real-time thermal infrared data to incident commanders via satellite communications link
- Derived thermal imagery data overnight, helped to plan efforts for the next day

"UAS For Fire Management: State-of-the-Art, Early Warning and Trends" MED 2009 Workshop on UAS Civilian Applications Thessaloniki, Greece, June 23, 2009

Aerovision Fullmar UAS

- Low cost system for civilian applications
- Fulmar aircraft
 - 3m wide
 - 20kg weight
 - Sh endurance
- Video and infrared cameras onboard
- Up to 50 km transmition

AirRobot

- Weight **
- Endurance up to 30 min **
- Payload 200g •••
- Distance 500m **
- **Barometric altitude control** •••
- Gyroscopic and acceleration sensors **
- Autonomous landing if radio communication is missing *
- Payloads *
 - **Color** camera
 - Night vision camera
 - **Thermal camera**

Academic Research

- Autonomous Forest Fire Monitoring System Using Multiple UAVs (R. Beard et al.)
 - Detect hotspots with detector agents and assign service agents to monitor them
 - Service agents equally spaced along the perimeter of the hotspot
 - Scheduling scheme for UAVs refueling
 - Simulation results and experimental results using fixed wing UAVs

- Cooperative Forest Fire Perception System for Multiple UAVs (Merino, Ollero et al.)
 - Heterogeneous UAVs (helicopters and blimps)
 - Heterogeneous sensors (infrared and visual cameras, fire sensors)
 - Perception system distributed within the fleet
 - Centralized system fuses data provided by different UAVs

"UAS For Fire Management: State-of-the-Art, Early Warning and Trends" MED 2009 Workshop on UAS Civilian Applications Thessaloniki, Greece, June 23, 2009

TUC Project: Nearchos UAS

- Based on Nearchos UAV
- Medium distance reconnaissance UAV
- Main Characteristics
 - Length 3.95m
 - Wingspan 5.10m
 - Height (landing gear) 1.15m
 - Empty Weight 60kg
 - Operational altitude
 - Operational speed 75km/h-220km/h
 - Flight Endurance
 8h-12h
 - Payload capacity 51kg-92kg

Nearchos UAV, Property of EADS-3SIGMA SA

- TUC Project: Development of an Integrated Airborne Fire Detection System
 - On-board thermal sensitive sensors (IR or NIR camera)

7km

- Evaluation software
 - Noise reduction
 - Feature extraction
 - Classification
 - Decision-making (alarm signal)
 - Integration with UAV-ground communication system
- Integration with UAV autonomous navigation system

Nearchos UAS for Airborne Surveillance

Area Surveillance

Perimeter Monitoring

Detected Fire Monitoring

Cooperation with developed ground surveillance system for forest monitoring

"UAS For Fire Management: State-of-the-Art, Early Warning and Trends" MED 2009 Workshop on UAS Civilian Applications Thessaloniki, Greece, June 23, 2009

Nearchos UAS Fire Detection

Fire Absent

Fire Present

Kontitsis, M., Tsourveloudis, N., and Valavanis, V., 'A UAV Vision System for Airborne Surveillance', *In proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA)*, vol. 1, pp 78-83, 2004

Project funded by the Greek Secretariat for Research and Technology through the EU Funds Forum 2000-2006 and the EADS-3SIGMA SA

"UAS For Fire Management: State-of-the-Art, Early Warning and Trends" MED 2009 Workshop on UAS Civilian Applications Thessaloniki, Greece, June 23, 2009

Media Coverage

Intelligent Systems & Robotics Lab www.robolab.tuc.gr

Conclusions

- Forest fires threat to environment
- Pessimistic predictions for the future
- New techniques in fire management are developing
- UAS can provide sufficient assistance
 - High altitude UAS for global monitoring
 - Team of UAVs for precision monitoring
- Both industrial and academic efforts
- Current research provides promising results
- The future is unmanned

Thank you for your attention

