
I. Lovrek, R.J. Howlett, and L.C. Jain (Eds.): KES 2008, Part II, LNAI 5178, pp. 18–25, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

On the Evolutionary-Fuzzy Control of WIP in 
Manufacturing Systems 

Nikos C. Tsourveloudis 

Department of Production Engineering and Management 
Technical University of Crete 
73100 Chania, Crete, Greece 
nikost@dpem.tuc.gr 

Abstract. The effectiveness of optimized fuzzy controllers in the production 
scheduling has been demonstrated in the past through the extensive use of Evo-
lutionary Algorithms (EA) for the Work-In-Process (WIP) reduction. The EA 
strategy tunes a set of distributed fuzzy control modules whose objective is to 
control the production rate in a way that satisfies the demand for final products, 
while reducing WIP within the production system. The EA identifies optimal 
design solutions in a given search space. How robust and generic is the control-
ler that comes out of this process? This paper faces this question by testing the 
evolutionary tuned fuzzy controllers in demand conditions other than the ones 
used for their optimization. The evolutionary-fuzzy controllers are also com-
pared to heuristically designed ones. Extensive simulations of production lines 
and networks show that the evolutionary-fuzzy strategy achieved a substantial 
reduction of WIP compared to the heuristic approach in all test cases. 

Keywords: Manufacturing Systems, Work-In-Process, Fuzzy Control, Evolu-
tionary Algorithms, Controller Design. 

1   Introduction 

As the manufacturing industry moves away from the mass production paradigm to-
wards the agile manufacturing, the life cycle of products gets shorter while the need 
for a wide variety of them increases. Keeping large inventories in stock tends to be 
unattractive in today’s markets. The same holds for the unfinished parts throughout 
the manufacturing system, widely known as Work-In-Process (WIP), as it represents 
an already made expense with unknown profitability due to the rapidly changing 
demand. In a highly changing demand environment, the accumulated inventories are 
less desirable than ever. 

The work-in-process inventory is measured by the number of unfinished parts in 
the buffers throughout the manufacturing system and it should stay as small as possi-
ble (for various reasons reported in [1], [2] and elsewhere). 

Control policies aim in keeping WIP at low levels [3]. However, an exact optimal 
value of WIP cannot be determined in realistic manufacturing conditions. Therefore, 
the problem of WIP determination and control is amenable to an artificial intelligent 
treatment, as suggested in [4], [5] and recently in [6], [8]. 
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Fuzzy logic has been used in tandem to Evolutionary Algorithms (EA) so as to 
keep the WIP and cycle time as low as possible and at the same time to maintain high 
utilization [7], [9]. The objective in those works was to optimize the control policy in 
a way that satisfies the (random) demand for final products while keeping minimum 
WIP within the production system. During the evolution, the EA identifies those set 
of parameters for which the fuzzy controller has an optimal performance with respect 
to WIP minimization for several demand patterns. 

The use of evolving genetic structures for the production scheduling problem, has 
recently gained a lot of acceptance in the automated and optimal design of fuzzy logic 
systems [10], [11]. However, a potential problem is that the evolutionary (or geneti-
cally) evolved fuzzy controllers might perform optimal only under the conditions 
involved in the evolution process. In this paper we examine the performance of evolu-
tionary optimized controllers in contrast to heuristically designed fuzzy controllers. 
For comparisons purposes we test the controllers in conditions different from the ones 
they have been designed for. In this way, some useful insights regarding the design 
robustness of the evolutionary tuned fuzzy controllers may be drawn. 

The rest of the paper is organized as follows. Section 2 describes the evolutionary 
fuzzy scheduling concept that is used for WIP minimization. Section 3 describes the 
comparison scenarios and presents experimental results for production lines and net-
works. Issues for discussion and remarks as well as suggestions for further develop-
ment are presented in the last section. 

2   Evolutionary-Fuzzy Scheduling 

Traditionally, a production system is viewed as a network of machines and buffers. 
Items are received at each machine and wait for the next operation in a buffer with 
finite capacity. WIP may increase because of unanticipated events, like machine 
breakdowns and potential consequent propagation of these events. For example, a 
failed machine with operational neighbors forces to an inventory increase of the pre-
vious storage buffer. If the repair time is big enough, then the broken machine will 
either block the previous station or starve the next one. This “bottleneck” effect will 
propagate throughout the system. 

Clearly, production scheduling of realistic manufacturing plants must satisfy mul-
tiple conflicting criteria and also cope with the dynamic nature of such environments. 
Fuzzy logic offers the mathematical framework that allows for simple knowledge 
representations of the production control/scheduling principles in terms of IF-THEN 
rules. The expert knowledge that describes the control objective (that is WIP reduc-
tion) can be summarized in the following statements [5], [8]: 

If the surplus level is satisfactory then try to prevent starving or blocking by in-
creasing or decreasing the production rate accordingly, 

else 
If the surplus is not satisfactory that is either too low or too high then produce at 

maximum or zero rate respectively. 

In fuzzy logic controllers (FLCs), the control policy is described by linguistic  
IF-THEN rules similar to the above statements. The essential part of every fuzzy 
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controller is the knowledge acquisition and the representation of the extracted knowl-
edge with certain fuzzy sets/membership functions. Membership functions (MFs) 
represent the uncertainty modeled with fuzzy sets by establishing a connection be-
tween linguistic terms (such as low, negative, high etc) and precise numerical values 
of variables in the physical system. The correct choice of the MFs is by no means 
trivial but plays a crucial role in the success of an application. If the selection of the 
membership functions is not based on a systematic optimization procedure then the 
adopted fuzzy control strategy cannot guarantee minimum WIP level [9]. 

The evolutionary-fuzzy synergy attempts to minimize the empirical/expert design 
and create MFs that fit best to scheduling objectives [7], [9]. In this context, the 
design of the fuzzy controllers (distributed or supervisory) can be regarded as an 
optimization problem in which the set of possible MFs constitutes the search space. 
Evolutionary Algorithms (EAs) are seeking optimal or near optimal solutions in 
large and complex search spaces and therefore have been successfully applied to a 
variety of scheduling problems with broad applicability to manufacturing systems 
[10]. The objective is to optimize a performance measure which in the EAs context 
is called fitness function. In each generation, the fitness of every chromosome is first 
evaluated based on the performance of the production network system which is con-
trolled through the membership functions represented in the chromosome. A speci-
fied percentage of the better fitted chromosomes are retained for the next generation. 
Then parents are selected repeatedly from the current generation of chromosomes, 
and new chromosomes are generated from these parents. One generation ends when 
the number of chromosomes for the next generation has reached the quota. This 
process is repeated for a pre-selected number of generations. The architecture of 
evolutionary-fuzzy WIP control scheme is presented in Fig. 1 and it is extensively 
discussed in [7] and [9]. 

The performance measure (fitness function) used in all previous treatments consid-
ers a known demand for products and the cumulative production of the system that 
produces these products. A typical fitness F(xi), of each individual xi is: 
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where, t is the current simulation time, T is the total simulation time and D(t) is the 
overall demand and PR(t) is the cumulative production of the system.  

Assuming that the capacity of a production system is given, equation (1) shows 
that the evolved MFs are highly based (in terms of their support and shape) on the 
demand values. Some questions arise here: What if the actual demand is different (in 
both magnitude and changing pattern) than the one assumed in the evolution of the 
fuzzy controller? Is the evolved controller robust enough to absorb variations in de-
mand? Or the original (without MF optimization) heuristic fuzzy performs better in 
unknown demands? Since there are no analytical solutions to those questions, in what 
follows we will examine and compare the performance of both evolutionary and heu-
ristic fuzzy controllers through simulation, for a wide variety of test cases. 
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Fig. 1. Evolutionary-fuzzy control concept 

3   Testing and Results 

The evolutionary-fuzzy approaches suggested in [7], are tested and compared to the 
heuristic fuzzy approaches initially suggested in [5]. In the all simulations performed 
we assume that the machines fail randomly with a failure rate pi. This rate is known 
and set before the simulation starts. Also, machines are repaired randomly with rate 
rri. The resources needed for repairs are assumed to be unlimited. The times between 
failures and repairs are exponentially distributed. All machines operate at known, but 
not necessarily equal rates. Each machine produces in a rate ri ≤ µi, where μi is the 
maximum processing rate of machine Mi. We also assume that the flow of parts 
within the system is continuous. 

The initial buffers are infinite sources of raw material and consequently the initial 
machines are never starved. The buffer levels at any time instant are given by: 

bj,i(tk+1) = bj,i(tk) + [rj(tk) − ri(tk)](tk+1 − tk), (2) 

where tk, tk+1, ri  are the times when control actions (changes in processing rates) hap-
pen. The cumulative production of a machine Mi is  

PRi(tk+1) = PRi(tk) + ri(tk)(tk+1 − tk). (3) 

In all simulations runs set-up and transportation times are negligible or included in the 
processing times. Buffers between adjacent machines Mi, Mj assumed to have finite 
capacities. 

Two common layouts of a production system are considered. A production line 
(Fig. 2a) and a production network (Fig. 2b). In Figure 2, circles represent buffers and 
the squares are machines. For simplicity both systems are assumed to produce one 
part type. Lines and networks producing multiple part types have been discussed  
in [5], [6] and it has been shown that have similar behavior to the single-part-type 
systems. The production systems of figure 2 are identical to the systems discussed  
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Fig. 2. The production systems used for controllers testing: a) Line, b) Network 

in [5], [6], [7], [9]. This was selected on purpose so as to facilitate the comparisons 
with previous approaches. The main observation made in [6], [7] and [9] was that the 
evolutionary tuned fuzzy controllers achieved a substantial reduction of WIP in al-
most all test cases. This is expected since the controllers were evolved for known 
patterns of demand that is either constant or stochastic with certain mean values. In 
the test cases that follow, we keep unaltered the controllers’ design but we scientifi-
cally change the demand patterns. In practice, and of course depending on the prod-
uct, demand is the main uncertainty that comes from the outside of the production 
system. 

3.1   Test Case 1: Production Lines 

The production line under consideration (Fig. 2a) consists of five machines producing 
one product type. The failure and repair rates are equal for all machines. The repair 
rates are rri=0.5 and the failure rates are pi = 0.1. The processing rates are also equal 
for all machines and are equal to µi = 2 (i=1,...,5). All buffer capacities are equal to 
BCi = 10. 

In the evolution of the original fuzzy controllers for production lines, the demand 
was either considered constant (specified items per time unit) or stochastic (with 
known mean values and a small variation). Now the demand patterns are significantly 
changed, as can be observed in Figure 3. The value of WIP  for both evolutionary 
(EFC: Evolutionary Fuzzy Controller) and heuristic (HFC: Heuristic Fuzzy Control-
ler) is presented also in Figure 3. As can be seen the demand is far from being  
constant. For testing purposes, the demand shown in Figure 3 takes a random value 
between zero and 2.5 items every 20 time units. It has been observed that both con-
trollers satisfy the demand and the same time achieve low WIP levels. But the evolu-
tionary tuned is better than the heuristic one in the long run. This was the case in 
various tests with multiple changes in demand. As shown in Figure 4, for a more 
frequently changing demand, the evolutionary tuned controller is better in keeping 
WIP low than the heuristically designed controller. 
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Fig. 3. Evolution of WIP  in test case 1: Demand changes every 20 time units 
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Fig. 4. Evolution of WIP  in test case 1: Demand changes every 5 time units 

3.2   Test Case 2: Production Networks 

The production network (Fig. 2b) consists of five machines also producing one part 
type. The failure and repair rates of all machines are equal. The repair rates are rri= 
0.5 and the failure rates are pi = 0.1. The processing rates are also equal for all ma-
chines and are equal to µi = 5 (i=1,..., 5). All buffer capacities are equal to BCi = 10.  

As expected (and may be seen in Fig. 5), the WIP  levels in test case 2 (production 
network) are higher than in the test cases 1 (production line). Also in test case 2 the  
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Fig. 5. Evolution of WIP  in test case 2: Demand changes every 20 time units 

evolutionary fuzzy controller gave less WIP than the heuristic fuzzy controller regard-
less of the demand changing frequency. 

4   Observations and Concluding Remarks 

A remarkable control ability of the WIP is shown in cases with a frequent demand 
change. This ability was observed regardless of production system’s design complex-
ity, as in both lines and networks the WIP is substantially reduced compared to the 
empirical selected fuzzy controllers. 

It is known that WIP itself cannot represent adequately of production system's per-
formance. One has to take into account also the accumulated orders backlog. It is also 
known that when demand is very high one may consider that service rate and thus 
backlog is more important than WIP. When demand can be easily satisfied and back-
log is in low levels, a substantial reduction of WIP may be more important than a 
small increase in backlog. What we have seen so far is that with the aid of the evolu-
tionary-fuzzy controllers the system’s performance becomes more balanced in terms 
of mean WIP and backlog. 

The heuristic fuzzy control approach cannot achieve the performance of the evolu-
tionary-fuzzy. However, it is still better than previously reported “bang-bang” control 
approaches. Even when compared to the evolutionary-fuzzy approach it is much sim-
pler in the design process as it steps on the human expertise/knowledge regarding the 
production system. In others words, one should very fast design, built and put to work 
a fuzzy controller with membership functions that represent the expert knowledge in 
contrast to the evolutionary-fuzzy system whose parameters are automatically set by 
the optimization procedure. 

The evolutionary-fuzzy controllers are capable of maintaining low WIP levels for 
product demands other than the ones used during the optimization. Therefore, the 
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evolutionary algorithms clearly represent a successful approach towards the optimiza-
tion of robust scheduling approaches.  

An interesting future extension of this work might be the use of EA strategies  
in more complex production systems such as multiple-part-type and/or reentrant  
systems.  
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