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Abstract— This paper presents a complete methodology for 
mission planning and navigation of Autonomous 
Underwater Vehicles (AUVs) in ocean environment. Path 
planning near the ocean floor is accomplished via genetic 
algorithms and B-Splines based on known data of the ocean 
floor. In addition, collision free navigation is achieved in 
unknown environments. Prior to vehicle’s launch, a genetic 
algorithm based on ocean floor data and on mission 
restrictions calculates the optimal path. Once the path is 
calculated, the vehicle is navigated through the predefined 
path by a set of fuzzy controllers. A second evolutionary 
algorithm optimizes the membership functions of these 
controllers so as the vehicle has the minimum error through 
its course. Extensive simulations were performed in order to 
evaluate the methodology and the derived optimized 
controller. 

I. INTRODUCTION 
As the technology of Autonomous Underwater Vehicles 

(AUVs) [1] grows and their applications and relative tasks 
are more demanding, new control architectures and 
methodologies are needed to expand their potentials [3]. 
Referring to AUV navigation one can distinguish three 
different problems [11], [12]: 1. Close-to-surface 
navigation, where GPS sensors can provide accurate 
position data. In addition to GPS, a various set of sensors 
can be used to estimate the vehicle’s position and state 
such as Inertia Measurement Units (IMUs), Doppler 
sonars, altimeters, inclinometers and magnetic compasses. 
2. Navigation in the mid-depth zone, where the AUV 
operates far from the sea surface and far from the sea 
floor. In that case acoustic sonars and IMUs are the only 
effective sensors. 3. Close-to-bottom navigation, where 
the needs for precise sensing and autonomous operation 
are increased. Thus close-to-bottom path design and 
following as well as precise navigation and effective 
collision avoidance are today’s challenges and objectives 
of the current research. 

The paper describes a complete methodology applicable 
to close-to-bottom navigation of AUVs, which generalizes 
techniques recently developed and published in the area of 
AUV navigation and path planning [5], [6], [9]. Similar, 
fuzzy modular controllers have been designed and tested 
with promising results [2], [4], [8], [10], while the current 
work expands the benefits of this technology. 

When the mission of an AUV enables close-to-bottom 
navigation, then the vehicle should be fitted with a path 
planner which is able to compute off-line a suitable path 
given the ocean floor features at the area of operation and 

restrictions to be applied during the mission. Accordingly 
the vehicle should be able to follow the predefined path 
with minimum error based on its sensors. During path 
following (on-line) the vehicle should be able to avoid 
obstacles that had not been taken previously into 
consideration. A variety of sensors can be utilized for 
vehicle state estimation and obstacle avoidance. Such 
sensors are altimeters (z-altitude), pressure sensors (z-
depth), inclinometers (roll, pitch), magnetic or gyro 
compass (heading), IMUs (Euler angles, accelerations, 
yaw rate), sonars (obstacle detection), and various 
cameras. 

The derived optimum path should be in accordance to 
restrictions that may vary in each case. Typical restrictions 
are: 1. maximum depth of path, which is inherited by the 
capabilities of each vehicle. 2. Minimum depth of path 
which is set by operational requirements, 3. Minimum 
distance between path points and ocean floor, set by 
controllability of the vehicle and by safety requirements, 
and 4. Minimum curvature on each point of the path set by 
vehicle controllability. 

Here we suggest a path planning and navigation 
methodology which may be applicable to a wide variety of 
AUVs. The architecture of the proposed method is in Fig. 
1. It enables three separate levels of mission planning, 
optimization and motion control. The first two layers are 
accomplished off-line prior to the mission, while the third 
level is responsible for the on-line navigation with 
collision avoidance and low level motion control of the 
vehicle. 

In the first layer of Fig. 1 a Genetic Algorithm (GA), 
similar to the one presented in [7], is used to compute the 
desired path. The GA’s chromosomes are the coordinates 
of the control points of a B-Spline curve [7]. The ocean 
floor data as well as the mission restrictions form the 
fitness function of the GA.  

In the second layer another GA is used to optimize the 
membership functions of the navigation fuzzy controller. 
The objective of this controller is to follow the path 
derived from the first layer. The third layer is used to 
guide the vehicle through the derived optimum path with 
the derived genetically optimized controller while it 
enables collision avoidance in case of unexpected 
obstacles. In such case the goal-based navigation is altered 
to a reaction-based one. 

The rest of the paper is organized as follows. In section 
2 the genetic path planner is described and analyzed. In 
section 3 the optimization of the motion control module as 
well as the simplified low level control module are 
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presented. The results shown in section 4 are compared to 
previously used approaches. Finally, section 5 concludes 
the paper with remarks and suggestions for future work. 

 
Figure 1.  

II. 

The proposed path planning and navigation architecture. 

GENETIC PATH PLANNING 
The objective of path planning is to define the best 

trajectory that the AUV should follow in order to 
accomplish its mission.  

In previous path planning approaches [13], [14], [15], 
the path was commonly represented by way points as a set 
of line segments. The generated error and the possible 
instability that may occur because of sudden and 
consequential direction altering may be one disadvantage 
of such methods.  

In the current work the use of B-Splines for the 
representation of the AUV’s path, leads to smooth curves 
with minimum curvature that the vehicle can follow 
during its mission. A B-Spline is a parametric curve based 
on blending functions defined by its control points [16]. If 
the number of control points is (n+1) with coordinates (xo, 
yo, zo),…,(xn, yn, zn) the coordinates of the B-Spline may 
be written as:  
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i, K(t) represent the blending functions and K the 
order of the curve witch is associated with the curve’s 
smoothness, with higher values of K corresponding to 
smoother curves. The sum of the values of the blending 
functions for any value of the parameter t is always 1. The 
blending functions are defined recursively in terms of a set 
of Knot values, as explained in [7]. 

Its start and endpoints, the second point and six free-to-
move points define the shape of a B-Spline path. The 
Cartesian coordinates of these free-to-move points are the 
chromosomes of the individuals to be optimized by the 
genetic procedure. The quality of the solution is evaluated 
by the fitness function, which is calculated for each 
member of the population. By this way, all members are 
scaled accordingly to their scores so that members with 
greater scores have greater possibility to pass their genes 
to the next generation and to give offsprings through the 
mutation and crossover operators. 

The Fitness function 
The fitness function is a weighted sum of six terms, 

each one connected with path constraints. These 
constraints describe the path feasibility, that is, whether 
can be followed by an AUV. The fitness function is 
defined as follows: 

∑
=

⋅=
6

1i
ii faf ,   (2) 

where ai is an importance index of fis. The term f1 
penalizes the existence of a non-feasible part of the path. 
It represents the percentage of the discretized B-Spline 
curve points (not the control points) that have z-heights 
greater of those of the bottom and are located under the 
solid sea floor boundary. By this way curves with smaller 
segments under the sea floor may give less values of the 
fitness function and are more probable to pass their genes 
to the next generations. 

Term f2 is the ratio between the actual length of the B-
Spline and the straight distance between the start and the 
end point, which is the minimum possible. It penalizes the 
overall length of the path, takes the values of one or 
greater and is weighted into the sum of the fitness function 
so that the shortest curves have greater possibilities to give 
offsprings.  

Term f3 is the percentage of the B-Spline points that are 
outside the bounding area of mission in the x-y plane. The 
size of the bounding area is user defined and may 
represent a mission restriction. 

Term f4 is the percentage of the B-Spline points that are 
outside the bounding minimum or maximum acceptable 
depth in the z plane. The depth limitations may as well are 
path restrictions and are useful when the AUV needs to 
navigate in specific depth regions or near the ocean floor. 

Term f5 is the percentage of the B-Spline points that are 
located within a minimum safety distance from the ocean 
floor, i.e. that have distance from the floor less than a 
minimum one. The minimum safety distance is user 
defined and is useful to keep the vehicle away from the 
dangerous area of sea floor and its features.  

Term f6 is the percentage of the B-Spline points that 
have a local curvature radius of less than a minimum user 
defined value. The radius is calculated for all the separate 
points and their adjacent ones and if it is less than the 
minimum then the curve is penalized. This term penalizes 
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the curves that have good scores but form paths that the 
AUV will have difficulty to follow and thus big overshoot 
errors will occur during the execution. The minimum path 
radius that the AUV can follow is user defined 
accordingly to the AUV’s specifications for 
maneuverability such us minimum turn diameter. 

B. 

III. 

A. 

The Genetic Algorithm Procedure 
The above described fitness function is calculated for 

each one of the individuals and each individual’s 
performance is evaluated by it’s score. Accordingly the 
satisfaction of the best fitness-stopping criterion is 
checked, i.e. the algorithm is stopped when one 
individual’s performance is better than the best expected 
in order to save computational time. If this is not the case, 
the fitness function is evaluated for all the individuals of 
the population.  

If a generation has reached a predefined value the 
procedure is stopped and the solution is given by the next 
individual. If not, crossover and mutation operators are 
applied to the individuals who are combined to give off 
springs that will form the next generation. With the 
crossover operator two randomly selected individuals are 
divided in a random gene and the first part of the first 
individual is connected to the second part of the second 
individual and vise-versa. By this way information is 
exchanged between two possible solutions of the problem. 
The mutation operator alters a randomly selected gene of 
an individual with a randomly selected value from the 
constrained space of genes as defined in the beginning of 
the process. The mutation operator introduces variability 
to the possible solutions, explores the possible solution 
space, and refines the solutions. The individuals with 
better scores (smaller fitness values) are more possible to 
participate to the reproduction and to pass their genes to 
the new generation. This procedure imitates the natural 
procedure of biological reproduction. After the formation 
of the new population a new circle starts.  

It should be noted that since ocean environment is in a 
great extent unpredictable, the use of path planning alone 
is insufficient to ensure collision free navigation and 
collision avoidance methods are need to be incorporated 
during the execution of the mission [12]. 

OPTIMIZATION OF LOW-LEVEL MOTION CONTROL 
After the calculation of the optimum path, the next step 

at the layered control architecture (Fig. 1) is the 
optimization of the motion control module. The procedure 
is designed to ensure that the AUV will have the 
minimum position error. The genetic optimization of the 
motion control module depends on reliable AUV 
modeling, and exact motion parameters identification. 
When position error increases or when an obstacle appears 
(moving obstacle or in areas with bottom data of poor 
accuracy) the collision avoidance module will navigate the 
AUV with reaction based navigation in collision free 
areas. 

The control approach we use here is described in [8]. It 
provides collision avoidance by a sensor fusion module 
where the information provided by the vehicle’s sensors is 
evaluated and collision possibilities at the four cardinal 
directions are computed. The low level motion control is 
provided by three fuzzy controllers i.e. the pitch, depth 
and yaw controllers. The pitch and depth controller are 

controlling the fins and thrusters for pitch angle 
adjustment and vertical positioning of the AUV in the 
vertical x-z plane. The yaw controller is controlling the 
fins and thrusters for adjustment of the orientation of the 
vehicle in the horizontal x-y plane. The rulebase of these 
controllers are of the Mamdani type and they all have 
similar structure [8]. The membership functions of the 
pitch, depth and yaw controllers have been redesigned and 
the membership functions are modified to be z-shaped, 
triangular and s-shaped.  

The individuals that are optimized through the genetic 
process consist of genes that correspond to the left, center 
and right values of the membership functions. For a total 
of 3+3+2=8 inputs and 3 outputs for the pitch, depth and 
yaw controllers, the total number of membership functions 
required is 21 (5 z-mfs, 5 s-mfs, and 11 trimfs) thus all 
individuals should consist of 53 genes. This number leads 
to great populations and increased computational time. In 
order to minimize both individual size and computational 
time we assume symmetric membership functions for all 
fuzzy sets involved. By using symmetric membership the 
described gene assignment the individuals to be evolved 
consist now of 33 chromosomes. The assumption of 
symmetric membership functions is totally realistic as to 
navigate an AUV in a uniformly random underwater 
environment, symmetric membership functions are 
required so that left-right motion in the horizontal plane 
and up-down motion in the vertical plane are treated in the 
same way by the controllers. Furthermore, all required 
motions and turns will have the same contribution to the 
evolution of the fittest membership functions, regardless 
of vehicle’s direction.  

The Fitness function 
The fitness function is used to score the quality of the 

controllers described by each individual’s genes through 
the genetic process. The score is to be minimized through 
the process as the population evolves towards better 
generations. In order to optimize the 33 membership 
functions of the three motion controllers a fitness function 
has been written in MATLAB®. The fitness function has 
inputs the individuals and the values of their 
chromosomes. At the first step the chromosomes are 
assigned to left, center and right arrays with size 33x1 in 
order to construct 33 z-shaped, triangular and s-shaped 
membership functions. At the next step various checks 
and corrections are performed in order to ensure that the 
values of left, center, right arrays represent proper and 
feasible membership functions. This is necessary as the 
genes of the individuals are created through random 
processes, such as, crossover and mutation and thus can 
inherit inconsistencies that have no meaning to 
membership functions.  

After all possible corrections and penalty setting, the 
chromosomes represent feasible membership functions 
and the movement of the AUV through the path is 
simulated. A simulated path is generated and during the 
AUV’s mission the average position error is calculated, as 
described in the next paragraphs. 

The optimum B-Spline path, which was created during 
the path planning layer, is now discretized in n points. The 
Cartesian coordinates of each of these points is linked to 
the AUV motion model and the simulation starts with the 
AUV trying to reach the target points in sequence. Each 
target point is considered to have been reached when the 
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AUV reaches it in a predefined distance. This predefined 
radius defines a circle noted as circle of acceptance. When 
the AUV has reached this circle the target point shifts to 
the next target point. At each simulation step the 
perpendicular distance of the position of the AUV to the 
line connecting the transition and target points is 
calculated. This distance is summed to the total error 
which is then divided by the number of simulation steps to 
give the average position error of the AUV. The above 
described procedure is shown in Fig. 2.  

 

 
Figure 2.  

IV. 

A. 

B. 

Path following and position error count during simulation. 

When the perpendicular distance in each step exceeds a 
predefined threshold, it is assumed that the controllers 
cannot control the AUV sufficiently and the simulation 
stops after the individual is penalized. 

EXPERIMENTAL RESULTS 
The proposed three-layered control architecture has 

been tested using a simulation environment. Genetic 
procedure calculations were programmed using the 
MATLAB® Genetic Algorithm Tool. A previously 
developed Phoenix AUV [18] motion model is used in the 
simulations for the optimization of the pitch, depth and 
yaw controllers. 

 Path Planning 
As previously mentioned, the path-planning layer 

calculates the optimal path in B-Spline form. The first, the 
second and the end points of the B-Spline path are fixed 
while the rest of the path is defined by six free-to-move 
points. The maximum and minimum depths are defined 
as: max(z) = 100 ft, min(z) = 85 ft. Each individual has 18 
genes, and the population size was set to 30. The 
crossover possibility was set to 0.9, the elite count was set 
to 1 and the maximum number of generations is 100.  

Fig. 3 is a typical example of the derived paths. It 
shows the produced B-Spline path through the ocean 
floor. By observing Fig. 3 one could conclude that the 
path generator produces smooth and feasible B-Spline 
paths. This path is used to train the membership functions 
of the low level motion control module as previously 
described. 

 Optimization of Navigation Controllers 
The optimization of the membership functions of the 

low-level motion controller is performed with 
MATLAB’s Genetic Algorithm toolbox. Population size 
is set to be 10. The relatively small (with respect to the 
individual size) population size is chosen in order to 

reduce computational time. The dimension space of 
possible solutions is scattered through the mutation 
operator which has a possibility of 0.2 and the possibility 
of crossover is 0.6. 

 

 
Figure 3.  

C. 

 Optimized B-Spline path 

The possibility of a chromosome to be mutated within 
an individual is 0.3. The best individual of each generation 
survives to the following generation. The scaling of the 
individuals and respectively their expectation to pass their 
genes to the new generations is set to be proportional to 
their scores. The maximum number of generation is set to 
be 80.  

Performance evaluation - Comparisons 
In order to evaluate the performance of the genetically 

evolved fuzzy controllers, we performed various 
comparisons between them and the manually tuned fuzzy 
controllers presented in [8]. Also the evolved controllers 
were compared to a set of simplified fuzzy controllers 
with z-mf, trimf and s-mf membership functions not 
manually tuned or evolved. All simulation runs are carried 
out with MATLAB® and SIMULINK®. During each 
simulation run, the actual position and the position error of 
the AUV are stored. After the simulation is terminated 
(when the AUV reaches it’s target), the maximum error, 
the mean error, the time needed and the overall length of 
mission are calculated.  

Three test cases are presented. In the first test case the 
AUV is moving along the predefined B-Spline path using 
three different sets of fuzzy controllers; the manually 
tuned, the simplified (without tuning) and the genetically 
evolved one. In the second test case similar comparisons 
are made under the presence of lateral ocean current of 
various velocities. In the third test case the AUV is 
simulated to move along a different B-Spline path than the 
one used to train the genetically evolved controller. The 
three test cases are presented in the following paragraphs. 

Test case 1: In this test case the AUV has to follow the 
path presented in Fig. 3. Ocean currents are not present. 
Results are shown in Τable I, whereas the actual paths are 
shown in Fig. 4. From Table I it can be noticed that the 
not tuned (w/o tuning) fuzzy controllers have the worse 
performance among the three tested; the manually tuned 
controller and the genetically evolved one have almost the 
same average and maximum position errors (with the 
genetic tuned been slightly worse on the average error). 
The advantage of the genetically evolved controller is that 
with this setting the AUV needs much less time to 
complete the mission. 
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Figure 4.  Test case1: Path lines achieved from various fuzzy 

controllers – No ocean current present - Distances in ft. 

TABLE I.   
PERFORMANCE EVALUATION OF CONTROLLERS FOR THE TEST CASE 1. 

 
Test case 2: In this case a lateral ocean current is taken 

into consideration. The AUV is moving along the 
predefined B-Spline path using the three different fuzzy 
controllers like in the test case 1. Certain performance 
measures are shown in Table II for ocean current speeds 
of 0.1, 0.2 and 0.3 ft/sec. The ocean current is assumed to 
have time-steady velocity in the x-y plane. The direction 
of its velocity is chosen to be vertical to the line 
connecting the start and end points of the path. The AUV 
motion lines for all controllers under the presence of 0.3 
ft/sec ocean current are shown in Fig. 5. 

TABLE II.   
PERFORMANCE EVALUATION OF CONTROLLERS WITH LATERAL OCEAN 

CURRENTS 

 w/o tuning Genetically 
tuned 

Manually 
tuned 

0.1 9.6775 8.4075 8.3006 
0.2 8.9036 9.5211 8.7098 

Max 
error 
(ft) C

ur
re

nt
 

ve
lo

ci
ty

 
(f

t/s
ec

) 

0.3 8.3877 11.3468 10.1037 
0.1 2.3000 1.4645 1.3184 
0.2 2.2722 1.6798 1.5496 

Mean 
error 
(ft) C

ur
re

nt
 

ve
lo

ci
ty

 
(f

t/s
ec

) 

0.3 2.4068 1.9257 1.8010 
0.1 1760.6 1769.6 1794 
0.2 1766.4 1783.6 1795 Time 

(sec) 

C
ur

re
nt

 
ve

lo
ci

ty
 

(f
t/s

ec
) 

0.3 1782.4 1812.6 1818 
0.1 3083.431 3081.576 3083.365 
0.2 3084.576 3085.644 3085.706 

Path 
Length 

(ft) C
ur

re
nt

 
ve

lo
ci

ty
 

(f
t/s

ec
) 

0.3 3086.571 3091.678 3090.963 
 
From Table II it may be noticed that the genetically 

evolved controller has slightly worse performance, in 
terms of mean error, than the manually tuned one in 
almost all cases with lateral ocean current.  

 
Figure 5.  Test case 2: Path lines achieved from various fuzzy 
controllers – Lateral ocean current 0.3 ft/sec - Distances in ft. 

Test case 3: The AUV follows a path line other than the 
one used in the genetic process of evolving membership 
functions for the fuzzy motion controller of the motion 
control module.  

 

Figure 6.  

Figure 7.  

Original and modified B-Spline paths. 

 
Test case 3: Performance evaluation of controllers – Path 

following along a modified B-Spline  

As previously explained, the B-Spline path is 
determined via three fixed points, i.e. the start point, the 
second point and the end point, and six free-to-move 

 w/o tuning 
 

Genetically  
tuned 

Manually 
tuned 

Max error (ft) 11.2498 8.1033 8.1408 
Average error  2.4335 1.3298 1.2812 

Time (sec) 1768.4 1710.2 1815.4 
Path Length (ft) 3083.566 3078.922 3085.370 
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control points which are genetically optimized so as to 
produce a collision free B-Spline path. An altered B-
Spline is created by manually changing the six control 
points and holding the first, second and end points the 
same. As a result the new B-Spline is not related to the 
ocean floor and is used only to evaluate the robustness of 
the fuzzy controllers. The genetically determined and the 
altered B-Splines with their control polygons are shown in 
Fig. 6. The maximum and the average error as well as the 
path length and the time needed to complete the path are 
presented in Table III, while the actual paths of each 
controller are presented in Fig. 7.  

TABLE III.   
PERFORMANCE EVALUATION OF CONTROLLERS FOR THE TEST CASE 3. 

 
From Table III it can be noticed that the genetically 

evolved fuzzy controller has better performance than the 
manually tuned one in all aspects except on the average 
error. This means that it has greater average overshoot 
error though it is able to maintain vehicle’s stability. 

V. CONCLUSION 
We have presented a layered control architecture 

applicable to AUVs and especially useful for near to 
ocean floor missions. Accurate navigation is achieved 
through optimum path planning utilizing B-Splines and 
genetic algorithms, and evolution of the membership 
functions of the motion fuzzy control module to fit the 
defined optimum path. In order to apply the suggested 
methodology accurate data for vehicle’s characteristics 
and hydrodynamic coefficients are needed.  

With the proposed control architecture an AUV will be 
able to navigate closer to obstacles not in segmented line 
paths but in paths with smooth form. The genetic 
algorithms have proven to be a robust methodology in 
finding solutions in path planning and membership 
function tuning. The path planner takes into consideration 
the AUV’s maneuvering characteristics to design paths 
that the AUV will be able to follow. Extensive testing of 
the derived controllers has been presented, also under the 
presence of lateral ocean current and under modified paths 
to simulate the real case of AUVs operation in ocean 
environments. The methodology has proven to give 
controllers that navigate the vehicle with greater accuracy 
for a given path, compared to controllers that are 
manually/empirically tuned. The benefits of the derived 
methodology beside the derived accuracy, is the uniform 
design of the control module for all AUV types and the 
smaller overall time needed for this design. Another 

advantage is that the genetically evolved fuzzy motion 
controllers navigate the AUV in paths with smaller length 
and in less time, which leads to greater battery efficiency 
and operation autonomy. In the future, this will be further 
investigated in realistic conditions. 
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