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T
his article presents fundamental aspects of a multilayer, hybrid, distributed field robot architec-
ture (DFRA), implemented in Java using Jini to manage distributed objects, services, and
modules between robots and other system components [39]. It is designed for heterogeneous
teams of unmanned robots operating in uncertain/hostile environments. Emphasis is given to
the control theoretic lower-level MATLAB-based environment (supported and integrated into

the Java-based framework using the JMatLink Java class library [30]), experimentally validated by
implementing simple prototype support modules for outdoor mobile robot navigation.

Derivation, implementation, and testing of such a distributed architecture bring together
the diverse fields of distributed artificial intelligence, human robot interaction, and multiagent
systems, combined with control theoretic approaches. This is where the main contribution and
novelty of this article lies: although the DFRA is implemented in Java/Jini, the MATLAB envi-
ronment allows for mathematical control theoretic research and experimentation and for rapid
prototyping of behavioral and control modules and services. Wrapping the MATLAB work-
space environment with JMatLink, in conjunction with the Jini distributed object platform,
allows modules and services implemented as native interpreted MATLAB code to be accessed
as remote and distributed objects and to be directly incorporated into behavioral architectures,
resulting in acceleration of development and added flexibility of implementation. This combi-

nation is not well represented in the literature and no complete approach has been published. 
Experimental validation is demonstrated by implementing simple prototype support modules, like

1) a time-history laser filter module; 2) a heuristic geographic positioning system (GPS)-based pose
detection module; and 3) fuzzy logic controllers utilizing laser, GPS, and odometers as inputs. 

The laser and GPS modules are not meant to challenge the state of the art of robot positioning or sen-
sor filtering; their purpose is to show rapid development and testing of these modules on real robots operat-
ing in the field, justifying and demonstrating the abilities of the overall architecture to integrate disparate
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components of varying levels of sophistication and develop-
ment into a unified functional whole. For example, the pose
detection system that provides adequate positioning data in
the outdoor experimental environment demonstrates how the
architecture is used to generate useful test-support modules
rapidly and with a minimum of effort. Even though this mod-
ule is almost minimally rudimentary, it is shown to be effec-
tive in supporting the derived fuzzy logic controllers. These
simple modules in no way compare to or challenge state-of-
the-art positioning systems and sound mathematical approach-
es reported in the literature (for example, see [41] and [42]). 

Related research is presented next, followed by a discussion
of the DFRA and MATLAB integration. The support mod-
ule development is presented next, along with details of the
fuzzy logic controllers for outdoor navigation. Experimental
results, discussion, and conclusions complete the article.

Related Research
A recent review of autonomous robot control architectures is
presented in [20]. Behavioral robotics architectures are pre-
sented in [2]–[4], [31], [34], [38], [39]. The DFRA is an
example of an architecture falling within the behavioral
robotics paradigm. 

Utilization of MATLAB as the primary computing envi-
ronment for mobile robot control experimentation has been
reported in [32] and [33], in which utilities in the form of
standard MATLAB function calls have been developed to
allow access to all sensors and actuators, and these could be
used in any standard MATLAB script. These systems also
exemplify architectures explicitly intended to provide as few
restrictions on robot control programming as possible while
allowing platform transparent implementation. 

In the general robotics and engineering cases, integration
of MATLAB into Java-based systems has been addressed in
[35] and [40]; however, MATLAB does not run on remote
self-powered agents, such as autonomous mobile robots, in its
full interpreted form .

Methods employing fuzzy-logic-based mobile robot navi-
gation are reported in [5], [7], [10]–[16], and [17]. Most of
these address navigation in indoor structured laboratory envi-
ronments, while [18] and [19] discuss outdoor navigation
using fuzzy systems. Waypoint navigation in which vehicles
move in predefined environments is reported in [26] and [27].
Outdoor environment navigation using odometer data has
been proven inadequate due to significant cumulative odome-
ter errors [21], [22]. The use of absolute position sensing such
as GPS is generally considered to be essential for successful
outdoor navigation [23]–[25], at least within the confines of
current autonomous field robot localization. 

The design of the fuzzy logic controllers reported here dif-
fers from related work in [18] and [19]. In [18], dead reckon-
ing is used requiring a priori knowledge of initial position. It
is not robust against cumulative odometer errors, and at times
the robot remains stationary during execution. The approach
followed in [19] for outdoor navigation used small lab-based
robots to prototype controllers for large outdoor vehicles in

agricultural environments. The indoor robots used hierarchi-
cal fuzzy controllers having a set of different behaviors, includ-
ing obstacle avoidance, goal seeking, and edge following,
which were then transferred to outdoor vehicles. However,
that work was applied mainly to corridor and edge following
and used an infrared (IR) beacon for homing on goal posi-
tions, thus avoiding the need for absolute position knowledge.
This, of course rules out the general case of navigation to a
novel unvisited location because it requires someone or some-
thing to place the IR beacon in the first place. Finally, com-
pared with reported research in [5]–[7], the fuzzy controllers
introduced here use GPS and laser data, and they are applied
in outdoor environments, as opposed to using only sonar sen-
sor data for indoor navigation.

Distributed Field Robot Architecture 
and Integration with MATLAB
The DFRA, presented in detail in [39] and [45], is a distrib-
uted multiagent Java-based generalization of the sensor fusion
effects (SFX) architecture [2]. It provides distributed capabili-
ties by adding a distributed layer to SFX using the Jini package
for distributed Java-based system implementation. The formu-
lation of the distributed layer is inspired from the concept of a
persona from psychology in that distributed services, up to and
including individual robots, are represented by their functional
characteristics to the broader distributed system as a whole.
Services can be searched for based on needed functionality,
rather than by name or physical location. The DFRA is the
backbone of the overall heterogeneous multirobot system.

Jini is utilized for the underlying middleware layer; the Java
programming language and runtime environment are utilized
for implementation and execution. Seven key constraints have
influenced the design of the DFRA:

◆ Behavior-based and deliberative support: Behav-
ior-based control has historically worked well for low-
level, time-sensitive control, while the deliberative
approach is geared toward learning, artificial intelli-
gence, and processes with weaker time constraints. This
requirement is met by the inclusion of the SFX hybrid
deliberative reactive architecture as a base. 

◆ Open standards: It is important to build on a base that
is open, flexible, and extensible. An important working
requirement is that the software be built on open stan-
dards and on open source if possible. Java, Jini, XML,
and other core technologies are common, with large
user bases and active development.

◆ Fault tolerant: Both the overall system and individual
modules should be reliable in the face of hardware
faults, software errors, and network problems. The use
of Jini as a foundation contributes to system-level fault
tolerance, while the use of SFX incorporates prior work
on robot fault recovery.

◆ Adaptable: The overall system is implemented in
Java, thus, software portability is not an issue as long as
all services correctly implement specified interfaces.
However, modules need to adapt and be good “net-
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work citizens’’ to allow the network environment as a whole
to function efficiently. This may involve limiting communi-
cation and message passing to maintain sufficient bandwidth
for critical services (such as live video) to function correctly. 

◆ Longevity: A robot should not be taken out of service
for installation of updates and other modifications. To
support this, components need to be modified, admin-
istered, logged, and maintained during runtime. This is
accomplished using dynamic class loading, a feature of
the Java language. 

◆ Consistent programming model: Implementation
should abstract object locality. The same method
should be able to access local or remote services with-
out sacrificing error handling or performance. While
this constraint is of primary concern for implementa-
tion, it does impact the approach taken and the con-
ceptual model of how services are located, acquired,
and used.

◆ Dynamic system: The system should be dynamic and
should be able to flexibly accommodate new sensors,
effectors, or other components. This implies that clients
are able to discover needed services at runtime and
adapt to the addition and removal of services over time.
For a client in a general distributed computing environ-
ment, the salient characteristics of a service are the
capabilities and attributes of the service. This is also true
for robotics as clearly presented in [39]. 

Three key technologies address the above constraints: the
SFX architecture, Java, and Jini, as briefly discussed below.

SFX Base Architecture
SFX is a managerial architecture [2] with deliberative and
reactive components incorporating sensor fusion. The primary
component of the reactive layer is the behavior that maps some
sensing percept generated by a perceptual schema to a tem-
plate for motor output, known as a motor schema. A perceptual
schema processes sensory data and other percepts to generate a
representation of what is sensed. 

Once a percept is generated, the behavior passes the infor-
mation to a motor schema that incorporates the control nec-
essary to act on the percept. 

While reactive components operate rapidly, they do not
have the ability to plan or even to maintain past state.
Deliberative components executing at a slower pace do
have this ability, however, and many are incorporated in
the SFX architecture. 

Java Implementation Language
The Java programming language and runtime environment
serve as base and foundation for the distributed system con-
trolling multiple robot platforms. It has been chosen for five
reasons:

◆ Platform independence: Java is an interpreted lan-
guage that can be executed on any platform that runs
the Java Virtual Machine (JVM).

◆ Strong typing: Java is a strongly typed language, so it

is possible to specify via interfaces certain actions that a
class must implement. It is possible to interact with
objects of the class in a known manner. Strong typing
aids in system development and with error handling
during system execution.

◆ Library support: There are many available software
libraries for Java providing various functionalities. Some
of the most important utilized in this research are:
JDOM, an XML parser; Java3D, a vector math and 3-D
visualization package; and a Java-MATLAB bridge and
a Java-CORBA library to communicate with robot
control software.

◆ Dynamic class loading: Dynamic class loading is a
critical benefit of the Java platform, especially in a dis-
tributed scenario. Dynamic class loading allows a Java
program to load classes at runtime. This enables the use
of classes that may not have even been written when
the Java program was started. In a distributed environ-
ment, programs or services may run for extended peri-
ods of time. Robots may move around their
environment and may wish to share information or
code with programs on other robots. The ability to do
this dynamically is vital.

◆ Performance: Since Java is a byte-compiled language,
it  traditionally has been considered slow. Java runs
through a virtual machine that interprets the byte code
stream and generates the native machine instructions
to perform each operation. This interpretation step
reduces performance. However, modern virtual
machines include a just-in-time (JIT) compiler that
compiles basic blocks of Java code to machine code
the first time the block is executed. Subsequent execu-
tions will use the newly compiled code rather than
reinterpret the byte code. 

Jini Distributed Layer
Middleware frameworks [43] are abstractions of a distributed
computing environment allowing software developers to more
easily extend system infrastructures into a distributed environ-
ment. Jini is an example of a middleware framework [44],
which has a goal of providing for the spontaneous networking
of services—connecting any device to any other device in the
network. Jini consists of a set of specifications that describe an
operational model for a Jini network and how components
interact within the system. The use of a standard middleware
layer such as Jini has a benefit: systems built on top of the
middleware layer automatically inherit the attributes of a dis-
tributed system. 

There are four primary benefits to Jini that are heavily used
in this approach: Jini provides protocols that enable services to
dynamically adapt to the network and computing environment;
Jini provides a form of naming service, called the lookup service,
which enables advertisement of services and availability to
potential clients; Jini provides a distributed event system in
which a client can register interest in a service and can be
notified when that service becomes available; to handle partial
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failures, Jini uses a leasing mechanism that enables a client to
obtain a lease on a service, and when the lease expires, the client
can either stop using the service or attempt to renew the lease. 

The DFRA uses modular services to implement all robot
capabilities, including sensors, effectors, and behaviors. Mod-
ules are exported to a distributed runtime system as services
with certain attributes and types. Services can then be
searched for (using a distributed-object lookup service) based
on functional attributes rather than details of actual imple-
mentation or physical location. This architecture allows a
decoupling of client and server, providing an interface (proxy)
to the requesting process in a modular fashion, regardless of
where the requested service physically resides or how it is
implemented at the local level. 

Figure 1 shows a pictorial representation of the DFRA,
emphasizing the distributed layers and their relationship to

the base SFX architecture. The diagram is divided into
three main layers. The lowest layer represents the base SFX
behavior-based hybrid deliberative-reactive robot control
architecture as seen on any individual robot. This layer
implements all functionalities of a single robot. The middle
layer (distr ibuted resource protection) provides access
guards and security protections for any services that are dis-
tributed and available for other agents in the larger multi-
robot system to access. The highest level (persona) provides
representations and actual access to distributed services, and
this is where components may be accessed based on func-
tionality. The entire system is implemented in Java, includ-
ing the SFX base as reported in [34]. 

Distributed services and modules are exported to a dis-
tributed runtime system as services with certain attributes
and types. Services may be searched for using a distributed

Figure 1. Distributed field robot architecture showing the relationship between the distributed system components and the base
SFX architecture. 

Abstract
Behavior

Task
Capabilities

Effector
Capabilities

Sensing
Capabilities

Information
Capabilities

Distributed
Capability

Representation
(Persona)

Distributed
Resource
Protection

SFX
Hybrid
Base

Resource
Protection

Security
Guard

Information
Protection

Task Manager

Sensing
Manager

Effector
Manager

Cartographer

Sensor

Sensor

Sensor

Sensor
Library

Behavioral Library Effector
Library

Abstract
Behavior

Sensor
PS Outputs

Tactical
Behavior

Tactical
Behavior

Tactical
Behavior

Effector

Effector

Effector

Paths and
Virtual Sensing

Abstract
BehaviorAbstract

Behavior
Abstract
Behavior

Behavior
Intrantiation



SEPTEMBER 2006 IEEE Robotics & Automation Magazine 97

object lookup service based on functional attributes, rather
than details of actual implementation or physical location.
Each module is roughly divided into three components,
namely, the proxy, server, and driver. The proxy is the repre-
sentation of the service that is transported around the net-
work, providing the ability to move code and data (it is not
merely a local representation of a remote object). The server
is the representation of the service that deals with the dis-
tributed system, mediating between the implementation of
the service (the driver) and the remote clients. The driver is
the actual implementation of the service. 

The JMatLink Java class library [30] is used to integrate
MATLAB into the Java-based system. JMatLink includes
methods and objects that allow Java to initialize a work-
space, write data members of any format to the work-
space, read from the work space, and execute command
line functions. The MATLAB workspace eng ine is
accessed by delivering a formatted string to MATLAB, and
its behavior is identical to that seen by a user entering
command via the MATLAB workspace command line.
MATLAB scripts and functions may run locally on the
robots as interpreted code without the need to be com-
piled into stand-alone executables. Figure 2 shows the
forms of support for MATLAB within the larger distrib-
uted SFX architecture. The block on the right of Figure 2
(Development Phase) represents several MATLAB-based
modules in development and testing. On the left of the
figure (Production Phase), a completed MATLAB-based
module is shown. Note that MATLAB modules do not
need to be compiled, even in the production phase.

MATLAB is supported at the driver module implementa-
tion level, and it may be used as the native server implementa-
tion of a service as shown in Figure 3. The associated server
and proxy handle the remote overhead and interaction with
other services. Details are provided in [29]. 

Support Module Development
MATLAB module prototyping is demonstrated by two very
simple modules: 1) a laser range data filter reducing noise and
ghost readings caused by laser bouncing, variations in grass,
vegetation, and other unforeseen outdoor environment condi-
tions; this is an example of a heuristic filter relying on MAT-
LAB’s matr ix and data processing power for ease of
implementation and 2) an extremely simple GPS-based posi-
tion detection module designed to show how the overall sys-
tem integrates modules of varying sophistication and quality
into a functional whole.

Figure 2. The relationship between MATLAB and overall DFRA.
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Laser Scan Filtering 
Range data needed for object avoidance is obtained from
scanning planar laser units mounted on the robots. Informa-
tion from the recent time history of sensor inputs is integrated
to eliminate noise. The field of view of the laser scanner is
180◦, centered on the robot body attached reference frame.
Each consecutive point in a single scan is offset by 1◦ (181
total points per scan). 

The laser scan filtering process integrates information from
the most recent scan at time k, up to n previous scans, k − 1,
k − 2, . . . , k − n. Figure 4(a) shows several consecutive laser

scans, transformed into the robot’s current frame of reference.
Inconsistent scan data (top right) are removed by the filter. The
lower part of the scan shows a consistent object that will not be
removed after filtering. Figure 4(b) shows two separate laser
scans taken at time k (the most recent scan) and at time k − n (a

previous scan), with a and l the relative angular and linear offsets
of the scans at time k and time k–n, respectively. For experi-
mental purposes, n has been set to 3, representing a tradeoff
between accuracy and response time for rotation measurements.

Each laser scan is represented by

L =
[

x
y

]
, (1)

where x = [x1, x2, . . . , xI ] , y = [y1, y2, . . . , yI ] , and
l = 181 is the number of elements per scan. Each column of

L represents a consecutive (x, y) coordi-
nate pair moving from left to r ight
across the 180◦ sweep of the laser scan. 

Each of  the (previous)  pas t
n ∈ {1, N } scans is transformed into
the re ference f rame of  the most
recent scan L(k). In order to account
for the fixed orientation of the laser
to the robot frame of reference in
previous scans, coordinate pairs are
shifted (left or right) by a number of
elements equal to the number of
deg rees  of  rotat ion between the
robot’s current position and its posi-
tion associated with that previous
scan [i.e., by a from Figure 4(b)]
Then, using a standard rotation and
translation transformation T, passed
scans are transformed into the current
scan’s frame of reference

LT(k − n) = L(k − n)Tr(k),r(k−n). (2)

T is given in terms of linear and rotational offsets, and it is
recalculated for each previous scan as follows 

Figure 4. (a) Consecutive laser scans collected during a robot run in the field. (b) Diagram depicting laser scans taken at time k
and at time k–n.
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Tr(k),r(k−n) =
[ c (α/2) −s(α/2) 0

s(α/2) c (α/2) 0
0 0 1

][ 1 0 l
0 1 0
0 0 1

]

×
[ c (α/2) −s(α/2) 0

s(α/2) c (α/2) 0
0 0 1

]
. (3)

Each shifted and transformed L is then converted into a
vector r in polar form with elements ri, i ∈ {1, 181} repre-
senting the Euclidian distance from the origin of the robot
body attached reference frame, with angles implicitly defined: 

r = [ r1 r2 · · · r181 ] , where ri =
√

x2
i + y2

i . (4)

The matrix R shifted, transformed, and converted to polar
scans represents the last n laser scans with all range readings
transformed into the current robot reference frame 

R =

⎡
⎢⎢⎣

r(k)

rT(k − 1)
...

rT(k − n)

⎤
⎥⎥⎦ . (5)

Hence, objects detected in multiple current and past scans
appear as range readings of similar values in multiple rows of R.

A simple heuristic and statistical filter is employed using
the variance, the mean value, and the maximum range read-
ings of each of the columns of R. These are calculated
respectively as 

rvar = var(R)

= [var( r1(k), r1(k − 1), · · · , r1(k − n)) · · ·
var( r181(k), r181(k − 1), · · · , r181(k − n))] (6)

rμ = [μ( r1(k), r1(k − 1), · · · , r1(k − n)) · · ·
μ( r181(k), r181(k − 1), · · · , r181(k − n))] (7)

rmax = [max( r1(k), r1(k − 1), · · · , r1(k − n)) · · ·
max( r181(k), r181(k − 1), · · · , r181(k − n))].

(8)

Angles of all range readings are implicit in the order in
which the readings appear in the rows of R, being consistent
for all rows of R due to initial shifting. The final filtered laser
vector is then given by

r� = [ r1 r2 · · · r181 ] where ri =
{

ri,μ if ri,var < v
ri,max otherwise,

(9)

where r� is the final filtered set of range readings spanning the
forward field of the robot in its current position, and ri,μ,
ri,var , and ri,max are the ith elements of r� , rvar , and rmax,
respectively, and ν is an appropriately defined threshold value. 

The filter essentially takes the average of the ranges (in a
particular direction) if they agree over n previous scans. If
there is significant disagreement, then the most optimistic (or
furthest) range is taken. The reason for this optimistic default
is that the laser range finders (unlike sonar and even IR) very
rarely report a real object to be further than it actually is

Figure 5. Control system shown as a collection of interrelated modules.
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(exceptions are glass and certain reflective surfaces); this has
been experimentally observed. Data from scans prior to cur-
rent time k outside the robot’s current forward facing field of
view (after shifting and transformation) are discarded in the
above calculations.

Position Detection
Pose (position) detection has been based on current and
passed GPS readings. Pose is represented by a triplet, (x, y, θ).

The location of the robot (x, y) is taken directly from the
current GPS latitude and longitude readings (filtered using a
proprietary filter supplied with the Motorola unit). Heading θ
is calculated by determining the angle made between a line
passing through the current robot position and a previous
position and due east. In this work, the offset between points
for heading calculation are set to 10 points, corresponding to a
distance of approximately 2 m when the robot was traveling at
an average speed of 0.5 m/s. This simple method has provided
adequate positioning data, and the average GPS error mea-
sured during all experiments has been found to be less than
1 m when the robots traveled over a 10-m path with known
absolute ground position.

This coarse pose detection method is not state of the art; it
is used to demonstrate how the overall DFRA-MATLAB

Figure 7. Graphical user interface.

Figure 8. Robot path: laser scans are shown.
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framework may be used with components of varying degrees
of refinement. 

Fuzzy Logic Controller
The multisensor control system is shown in Figure 5. It consists
of four modules: the laser range filter, position detection, head-
ing error calculation, and the actual fuzzy logic robot con-
troller. An additional module logs all sensor data, controller
outputs, control loop delay, and various other system data time
stamped and synchronized so that experiments performed can
be reconstructed and analyzed at a fine level of detail. 

The control system receives as inputs laser, odometer, and
GPS data as well as a control reference input (next waypoint or
goal point). It outputs actuator commands in terms of robot
rotational and translational velocities. 

The fuzzy logic controller is imple-
mented as a Mamdani-type controller
similar to previous work [5], [7]. The
fuzzy logic controller rule base includes
the fuzzy rules responsible for vehicle
control. The inference engine activates
and applies relevant rules to control the
vehicle. The fuzzification module con-
verts controller inputs into information
used by the inference engine. The
defuzzification module converts the out-
put of the inference engine into actual
outputs for the vehicle drive system.

For formulation of the filtered laser
data into fuzzy linguistic variables to be
used as input into the fuzzy controllers,
the laser scan area is divided in three
radial sectors labeled as Left Area, Center
Area, Right Area, denoted by
Wi i = 1, 2, 3, each one including fur-
ther division in Close, Medium, and Far
regions as shown in Figure 6. Laser
effective range is experimentally verified
to be about 8 m (25 ft). The left and
right areas have a width of 70◦ each and
the center area of 40◦.

The fuzzy controller input from the filtered laser range
block consists of a three-value vector with components
related to the distance of the closest object in the left sector
of the scan, in the center sector, and in the right sector,
respectively. This information is used to calculate three col-
lision possibilities left, center, and right, reflecting potential
static/dynamic obstacles in the robot field of view, similar to
the approach followed in [5], [7] but for outdoor environ-
ments. The fourth input to the fuzzy logic controller is the
robot’s heading error calculated from the robot’s current
heading and the desired heading. 

Implementation-wise, each of the three aggregate range
inputs includes three trapezoidal membership functions, namely,
close, medium, and far. The input linguistic variables are denoted
as left distance, right distance, and center distance, corresponding to

the left area, right area, and center area sectors. The heading
error input uses four trapezoidal membership functions and
one triangular membership function. Chosen membership
functions for the input variables are empirically derived based
on extensive tests and experiments as reported in [29].

The value of each distance input variable d i (corresponding
to left area, center area, right area) is fuzzified and expressed by
the fuzzy sets C i , MDi , Ai referring to close, medium, and far as
shown in Figure 6. The range of the membership functions for
each d i is between 0–8 m. The value of the input variable
heading error, he, is fuzzified and expressed by the fuzzy sets FL,
L, AH, R, FR, referring to far left, left, ahead, right, and far right,
respectively. The range of the membership functions for the
heading error is between −180◦ and 180◦.

Figure 9. Three different paths for the same scenario.
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The fuzzy logic controller has two output variables 1) trans-
lational velocity (tr) implemented with two trapezoidal member-
ship functions and one triangular membership function and 2)
rotational velocity (rv) implemented with four trapezoidal mem-
bership functions and one triangular membership function. 

The value of the output variable tr is expressed by the fuzzy
sets ST, SL, F, referring to stop, slow, and fast. The value of the
output variable rv is expressed by the fuzzy sets HRR, RR,
AHR, LR, and HLR, referring to hard right, right, ahead, left,
and hard left.

The output commands are normalized in a scale from 0–1
for the translational velocity, where 0 corresponds to complete
stop and 1 to maximum speed. Rotational velocity output
commands are normalized from −1 to 1, where −1 corre-
sponds to a right turn with maximum angular velocity and 1
to a left turn with maximum angular velocity. Each fuzzy rule
j is expressed as: IF d1 is D j1 AND d2 is D j2 AND d3 is D j3

AND he is HE j THEN tr is TR j AND rv is RV j ; for
j = 1, . . . , number of rules.

Dji, is the fuzzy set for di in the jth rule, which takes the
linguistic value of C i , MDi , Ai . HE j is the fuzzy set for the
he, which takes the linguistic values FL, L, AH, R, FR. TRj

and RVj are the fuzzy sets for tr and rv, respectively. The
generic mathematical expression of the jth navigation rule is
given by 

μR( j) (d i, he, t r, r) = min[μDi
i
(d i), μHE ( j) (he),

μTR( j) ( t r), μRV( j) ( rv)]. (10)

The overall navigation output is given by the max-min
composition and in particular

μ∗
N ( t r, v r) = max min

d i,he

[
μ∗

AN D(d i, he), μR(d i, he, t r, rv)
]
,

(11)

where 

μR(d i, he, t r, rv) =
J⋃

j=1

μR( i) (d i, he, t r, rv).

The navigation action dictates change in robot speed
and/or steering correction, and it results from the defuzzifica-
tion formula, which calculates the center of the area covered
by the membership function computed from (11).

Experimental Results
Experiments were performed in outdoor environments using
two ATRV-Jr mobile robot platforms. There was access to all
Mobility functions (which may be called if needed), but
Mobility itself was not used as a support software environ-
ment. Reported results concentrate in fuzzy-logic-based navi-
gation and collision avoidance; more complicated case studies

Figure 11. The paths followed by the two robots in the second experiment.
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have been reported in [45]. A brief discussion is also offered
for both odometer and GPS error quantification. 

Discussion of Odometer and GPS 
Error Quantification
To quantify, somehow, odometer and GPS errors, experi-
ments were conducted where ATRVs followed three predeter-
mined test patterns: forward and backward motion along a
15-m straight line; tracing a 10-m square; and tracing a circle
with a radius of 25 m. A total of six tests per pattern over a
three-day period were conducted to quantify raw GPS, fil-
tered GPS (using the Motorola-supplied filter within the GPS
unit), and odometer errors. A full control loop cycle required
0.2 s, thus, data were collected at a rate of 5 Hz. 

It was observed that in the rectangular and circular tests,
odometer and GPS positions deviated by approximately 2 m
and 6 m on average, respectively. 

Considering all tests for the forward and backward robot
movement, the cumulative odometer error was found to be
0.4% per meter traveled, while the average GPS position
error was found to be 0.91 m with an error standard devia-
tion of 0.52 m. 

The path generation for the square pattern was generated
by a timed sequence of forward commands followed by a rota-
tion command calibrated to produce a 90◦ turn. Slight varia-
tions in turning times and loop delays resulted in progressively
incrementing position error, even as measured by odometry.
The circle tests, on the other hand, were generated by apply-

ing the same actuator arc command repeatedly. More details
are offered in [29].

Dynamic Fuzzy-Logic-Based Control 
in Outdoor Environments
Experiments were performed in an outdoor (somewhat
uneven terrain) environment with dirt, grass, tree, and some
vegetation. The first set of experiments required that the
robots travel through predefined waypoints while avoiding sta-
tic and dynamic obstacles. The second set required that robots
follow sets of waypoints that can be changed dynamically by a
human operator while the robots are moving. Additional
experiments included raster scans with two robots starting
from different initial positions, avoiding each other as well as
other obstacles found in their paths. 

To facilitate further robot deployment, a graphical user
interface (GUI) was designed, shown in Figure 7, allow-
ing human operators to monitor robot movement, to
modify dynamically their waypoints or current goal posi-
tions, or to define areas to perform a raster search (select a
desired area to scan specifying a lane spacing parameter).
Although robots receive final goal positions and waypoint
sets from the GUI, all control processing is performed
locally on the robots. Robot controllers may revert to
locally stored goal locations or waypoint lists if the GUI is
not in operation, if it is not required for a particular
experiment, or if communication between the remote
GUI and the robots is cut off. 

Figure 12. Robots avoiding each other.
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Experiment 1
The first experiment demonstrates goal point following in an
environment with many unknown obstacles (trees). The robot
is given an initial position on one side of a large group of trees
and a final goal point location on the other side of the group of
trees. Figure 8 shows one full path traveled through the tree-
covered area from the initial point to the final point; periodic
laser scans are shown over the course of the robot’s path. This
experiment was repeated several times, and Figure 9 shows the
different paths followed by the robot for three repetitions of the
same experiment. Path differences were caused by variations in
the input readings produced by differences in GPS reception
and by subtle and cumulative differences in laser reading and
odometer readings. However, in all cases, the robot moves
toward its final goal GPS point. In each of the experiments,
robots were able to ultimately find the distant goal positions
without colliding with any of the trees. Figure 10 presents a
sequence of photos of the robot navigating among the trees
(sequence from upper left to lower right). 

Experiment 2
Experiments have been performed with two robots operating
simultaneously. Robots travel through a set of goal points
delineating a box shape. The robots start from different initial

positions and travel to each of the goal points defining the
box. One robot moves clockwise, the other counterclockwise.
The paths followed are shown in Figure 11; similar results
have been obtained repeating the same experiment. The
robots negotiate a static object (a tree) and a dynamic object
(the other robot) as they traverse the set of goal GPS points.
While the robots were moving, they crossed each other’s path
and avoided one another as shown in Figure 12 and visualized
with a sequence of images in Figure 13. 

Experiment 3
A raster search was also performed using two robots. Robots
start from different positions in the field and move in opposite
directions while performing the raster search. The trajectories
followed by the two robots are presented in Figure 14. The
experiment has been repeated several times with similar
results. For archive videos, see http://www.csee.usf.edu/~
aanelson/Robot_Movies.html.

Discussion and Conclusions

Discussion
It is essential to clar ify that while individual modules
described in this article appear to be relatively simple, they

Figure 13. Images of two robots moving towards each other and avoiding one another.
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form the basic building blocks needed to execute more complex
tasks. Such a task, presented in [45], is a complex outdoor-
simulated demining task where sensors, effectors, schemas,
and behaviors implemented in each robot were managed
through the DFRA. 

The task involved two unmanned ground vehicles (UGVs)
and an unmanned vertical take-off and landing (VTOL) vehi-
cle. Each UGV was paired to an operator control unit; a mis-
sion control unit coordinated the entire operation. The three
robots and all control interfaces communicated through a
wireless LAN that used the dynamic discovery capabilities of
the DFRA to locate and interact with the services on other
machines. The scenario was as follows: 

◆ The mission controller directed one robot to perform a
raster search of a part of the demonstration field, look-
ing for simulated mines; 

◆ The VTOL vehicle, under remote teleoperation but
using onboard vision processing, began searching the
field, too.

◆ When a potential mine was detected by the VTOL, a
recruitment agent, implemented within DFRA, sent
a request for help. Following the recruitment proto-
col described in [46], the second, idle robot answered
the call for help and began a local search of the area
containing the potential mine. This process operated
independent of operator interaction, solely at the
direction of the software agents operating on behalf
of each robot. 

The DFRA successfully integrated operator graphical
interfaces, high-level deliberative and low-level reactive
robot services. Each ground robot operated under the
direction of both the DFRA and the MATLAB-based fuzzy
logic controller. High-level agents interacted to provide
task-level commands. The control theoretic lower level was
then responsible for the execution and successful comple-
tion of the navigation goals.

This demonstration validated four key aspects of the sys-
tem: the architecture can be extended and implemented on

Figure 14. A raster search performed by the two robots.
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real hardware; reactive components in general and the MAT-
LAB-based control theoretic components in particular can
operate in a real-world situation; deliberative agents can
interact with and influence the operation of multiple robots;
and the distributed system can be used effectively for a com-
plex task.

It is also true that due to “timing issues,” controllers must
be designed to accommodate an acceptable variation in con-
trol delay. For the performed experiments, the system con-
troller loop delay was about 0.2 s (5 Hz), thus, the fuzzy rule
set was designed to function in a control loop window of
between 10–1 Hz.

Conclusions 
This article presented a DFRA and its integration with 
MATLAB that is capable of supporting simple and com-
plex functionality of heterogeneous teams of robot sys-
tems. This architecture was used to demonstrate
multisensor mobile robot fuzzy-logic-based navigation in
outdoor environments. 

The main contribution of the article is the overall archi-
tecture that serves as the backbone for any module design
and implementation. A second contribution is the fuzzy
logic controllers that are extensions of previously reported
ones in [5]– [7]. The deviation from the previous design is
in using a totally different sensor suite (lasers, odometers,
and GPS) for outdoor navigation (versus sonar sensor-based
indoor navigation), different area division for scanning and
simplicity of implementation. Finally, the MATLAB con-
trol theoretic level as integrated with the rest of the system
architecture may serve as a “standard platform” for distrib-
uted heterogeneous systems. 
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