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Abstract – Fuzzy logic is widely used for mobile robot 
navigation. The main draw back of this approach is the ad hoc 
design of the controllers used. A popular method for the 
optimization of fuzzy logic controllers for the navigation of 
mobile robots is the use of genetic algorithms. An issue, in this 
procedure is the selection of the fitness function for the 
improvement of the behavior of a pre-designed controller. We 
analyze the factors that influence the evolution of the fuzzy 
controller based on the fitness function used and present some 
preliminary results. In order to validate our approach a test bed 
has been developed based in a low cost robot.  
 

I. INTRODUCTION 
 

Fuzzy logic techniques are commonly used for navigation 
of different types of robot vehicles [1]. The popularity of the 
use of fuzzy logic is based on the fact that it can cope with 
the uncertainty of the sensors and the environment really 
well. By using it, the robot vehicles are able to move in 
known or unknown environments, using control laws that 
derive from a fuzzy rule base. This base is consisted from a 
set of predefined IF-THEN rules, which remain constant as 
far as it concerns their structure during the operation of the 
robot. These rules as long as the membership functions of the 
input and output variables are usually designed ad hoc by 
human experts.  

Several researchers have used fuzzy logic for the 
navigation of a mobile robot. In [2] a layer goal oriented 
motion planning strategy using fuzzy logic controllers has 
been proposed, which uses sub-goals in order to move in a 
specific target point. Another approach is presented in [3], 
where the authors propose a control system consisted of 
fuzzy behaviors for the control of an indoor mobile robot. All 
the behaviors are implemented as Mamdani fuzzy controllers 
except one which is implemented as adaptive neuro-fuzzy. In 
[4] a combined approach of fuzzy and electrostatic potential 
fields is presented that assures navigation and obstacle 
avoidance.  

The main draw back of the approaches presented is that 
the design of the fuzzy logic controller is relied mainly on the 
experience of the designer. In order to overcome this 
problem several researchers have proposed tuning of the 
fuzzy logic controller based on learning methods [5] and 
evolutionary algorithms [6] - [11], in an attempt to improve 
the performance and the behavior of the robot. 

In [6] a fuzzy logic controller for a khepera robot in a 

simulated environment was evolved using a genetic 
algorithm and the behaviors of the evolved controller were 
analyzed with a state transition diagram. The robot by using 
the evolved controller produces emergent behaviors by the 
interaction of the fuzzy rules that were produced from the 
evolution process. In [7] the authors proposed a three step 
evolution process to self-organize a fuzzy logic controller. 
The procedure initially tunes the output term set and rule 
base, then the input membership functions and in the third 
phase it tunes the output membership functions. Hargas et al. 
in [8] proposed a fuzzy-genetic technique for the on-line 
learning and adaptation of an intelligent robotic vehicle. In 
[9] the authors present a methodology for the tunning of the 
knowledge base of the fuzzy logic controller based on a 
compact scheme for the genetic representation of the fuzzy 
rule base. In [10] the authors present a scheme for the 
evolution of the rule base of a fuzzy logic controller. The 
evolution takes place in simulated robots and the evolved 
controllers are tested in a khepera mobile robot. Nanayakkara 
et al. in [11] present an evolutionary learning methodology 
of a fuzzy behavior based controller using a multi objective 
fitness function that incorporates several linguistic features. 
The methodology is compared with the results that derive by 
the use of a conventional evolutionary algorithm.  

A main issue which is not addressed in the literature, is 
related to the selection of factors of the fitness function 
which is going to be used in the evolution of a fuzzy logic 
controller. The majority of the fitness functions used is hand 
formulated and usually task specified. This results to 
controllers which depend heavily on the overall design of the 
functions. An attempt to formulate a way of picking the 
suitable function for a task was made by Nolfi and Floreano 
in [12]. They proposed the concept of "fitness space", which 
provides a framework for describing and designing fitness 
functions for autonomous systems.  

In this paper we will attempt to analyze the differences in 
the behavior of a real robot which are produced by the 
evolution of a fuzzy controller using different types of fitness 
functions.  These are categorized into three broad categories 
and formally analyzed in section 2. We will use a genetic 
algorithm with exactly the same parameters in order to 
evolve the membership functions of a predefined fuzzy 
controller. An analysis of the results will be presented and 
the influence of different parameters in the fitness function 
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will be identified.  
The rest of the paper is organized as follows. In section 2 

the main characteristics of the three different types of fitness 
functions are identified and there is an analytical description 
of the actual functions used. In section 3 the fuzzy logic 
controller which was evolved is presented together with the 
genetic algorithm used for evolution. In section 4 a custom 
made robotic vehicle is presented and in section 5 the 
experimental results are presented and analyzed. Finally in 
section 6, issues for discussion and further research are 
presented.  

 
II. FITNESS FUNCTION CATEGORIES 

 
The choice of the fitness function is a fundamental issue 

for the evolution of the controller of a mobile robot. The 
overall behavior of the robot can be affected by the form that 
these functions might have. There are several types of fitness 
function proposed in the literature and each one of them is 
considering different factors. 

These functions can be divided based on whether there is 
prior knowledge of the task they want to achieve and 
according to the behavior of the controller that they produce. 
We would consider three types of functions which are 
aggregate, behavioral and tailored fitness functions.  

The term aggregate fitness describes functions that select 
only for high-level success or failure to complete a task 
without regard how the task was completed. The main 
advantage of this type of function is that reduces the injection 
of human bias in the evolution process since it’s aggregating 
the evaluation of the robot’s performance in a single success/ 
failure term. For the evolution of complex behaviors 
aggregate functions are less depended on the designer than 
the behavioral and even more the tailored as they are 
incorporating the knowledge of the designer and they guide 
the evolution process in a desired behavior.  

The term behavioral fitness describes functions which 
have task-specified hand-formulated functions that measure 
various aspects of a robot’s functionality. The distinctive 
feature of this class of functions is that they are made only of 
terms or components that select for behavioral features of a 
presupposed solution to a given task. 

Finally the tailored fitness functions are the ones that are 
responsible of the evolution behaviors that are pre-
recognized from the designer of the function. This type of 
functions combines elements from both the behavioral and 
the aggregate categories. Usually in tailored functions the 
aggregate terms are measuring a degree partial task 
completion in a way that inserts some degree of a priori 
knowledge.  

In order to investigate how different types of fitness 
functions are influence the evolution of a fuzzy logic 
controller for a mobile robot three different fitness functions 
were used.  

The first fitness function used was pure aggregate function 
which was measuring only how close the robot has went in a 

target position comparing to its initial position. During the 
evolution process the level of activation of the sensors or the 
number of collisions with the obstacle wasn’t considered. 
The form of the function for the individual i of the generation 
j was: 
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where, dfinal is the final distance of the robot from a 
predefined target point and dinitial the initial distance of the 
robot from a predefined target point.  

The second fitness function used was a behavioral fitness 
similar to the one used in [15] for the evolution of a discrete 
time recurrent neural network. The fitness was considering 
the percentage of straight motion of the vehicle, the 
activation level of the sensors and the velocity in each wheel 
of the vehicle. This function wasn't considering the distance 
of the robot's position relative to the target position. The form 
of the function for the individual i of the generation j was: 

( )( )RLFRi aaavvmeanf
L
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where, vL the velocity of the left wheel of the robot , vR of the 
right and aF, aR,, aL are the activation levels of the front, right 
and left sensors respectively. By the term activation level we 
consider the percentage that is calculated by the division of 
the actual sensor reading divided by its maximum value. The 
activation level of each sensor derives from the following 
equation: 

rangesensor
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where, sensor_reading( t) is the reading at the time step t  of 
the experiment. If the activation level is 1 then the sensor is 
not having any obstacle in its field of view. 

The third function used, was a tailored fitness function 
which measured how close the robot has went in a target 
position comparing to its initial position and the activation 
level of each sensor that the robot had. The form of the 
function for the individual i of the generation j was: 
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III. DESIGN OF THE FUZZY LOGIC CONTROLLER 

AND OF THE EVOLUTION PROCESS 
 
A. Fuzzy Logic Controller 
 

Based on previous work [14] we have designed a fuzzy 
logic controller with four inputs and two outputs. The inputs 
are the heading error, the distance from obstacles as it was 
measured from the front sonar sensor and the distance from 
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obstacles as it was measured from the left and the right 
infrared sensors. The outputs from the controller were the 
values for the movement of the left and right servos.  

The inputs from the sensors are used in order to calculate 
the collision possibilities in three directions, which are front, 
left and right collision possibility. The heading error is 
calculated from the robot’s current heading and the desired 
heading.  

Implementation wise the input variable heading error is 
including four trapezoidal membership functions and one 
triangular membership function. The input variable front 
collision possibility includes three trapezoidal membership 
functions and the input variables left and right collision 
possibility are including two trapezoidal membership 
functions each.  

The value of each distance input variable di i=1,…,3 
(corresponding to front, left , right area) are expressed by the 
fuzzy sets Ci, Ai  (corresponding to close and away) for the 
left and right area and Ci, MDi,  Ai (corresponding to close, 
medium distance and away) for the front area. The values of 
the input variable heading error, (he), are expressed by the 
fuzzy sets FL, L, AH, R, FR (corresponding to far left, left, 
ahead, right and far right). The outputs of the fuzzy logic 
controller are the speeds of the left and the right servo motor. 
The membership functions describing the fuzzy sets for each 
output variable are Z, S, M, H (corresponding to zero, small, 
medium and high speed).  

Each fuzzy rule j is expressed as: 
IF he is HEj AND d1 is Dj1 AND d2 is Dj2 AND d3 is Dj3 
THEN lm is LMj AND rm is RMj   
wrere j=1,…, number_of_rules, Dji is the fuzzy set for di in 
the jth rule which takes the linguistic value of Ci, MDi, Ai for 
i=1 (front area) and Ci, Ai for i=2,3 corresponding to the left 
and right areas. HEj takes the linguistic values FL, L, AH, R, 
FR and finally LMj and RMj are taking the linguistic values Z, 
S, M, H. 

The generic mathematical expression of the jth navigation 
rule is given by:  

)](),(),(),(min[),,,( )()()()( rmlmdhermlmdhe jji
i

jj RMLMiDHEiR µµµµµ = .(5) 

The overall navigation output is given by the max-min 
composition and in particular:  
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B. Genetic Fuzzy Tunning 
 

For the evolution of a fuzzy logic controller the 
membership functions and the rule base are potentional 
candidates for evolution [16]. In this approach we consider a 
fixed rule base as it was created by the human expert that 
designed the fuzzy logic controller and we evolve the 
membership functions with a genetic algorithm.  

The chromosome is created by encoding the real values of 
the numbers that define the membership functions of the 
input and output variables as described in fig. 1.  

1a 2a 3a 4a 5a

1a 2a 3a 4a 5a

6a

6a

7a

7a

8a

8a

9a

9a

10a

10a

na

na

1−na

1−na2−na

2−na

……

Input Membership Functions Output Membership Functions

Chromosome  
Fig. 1 Chromosome created by the membership functions 

 
Each input and output variable is encoded as an array Cini 

where i=1,…, number_of_input_variables, and each output 
variable is encoded as Coutj where j=1,…, 
number_of_output_variables. The overall chromosome has 
the following form: 

][ ji CoutCinC = .  (7) 

The length of the chromosome is related to the number and 
the type of the membership functions of the input and output 
variables and to their number. An initial population is created 
and each individual, which is a fuzzy logic controller, of a 
single generation is tested in the same experiment. After the 
completion of the experiments the performance of each 
individual is evaluated based in the fitness function used, and 
the individuals are ranked. For the selection process a 
roulette wheel with slots according to fitness is used, as 
described in [17]. After that the crossover is performed and 
mutation of the final population. In all the experiments 
performed the variables of the genetic algorithm like the 
crossover and the mutation probability are the same. This has 
as a result all the variations in the behaviors of different 
controllers to attribute to the different type of fitness 
functions.  

 
IV. CUSTOM ROBOT VEHICLE  

 
There is a lot of argument about using simulation or 

experiments in real robots for the evolution of their 
controllers. Some researchers propose the use of simulators 
to initially evolve the controllers and then validate them in 
real robots. We believe that although simulation has proven 
to be a useful tool for the evolution of robot controllers, the 
evolution in real robot can incorporate factors that a 
simulation, no matter how accurate it is, cannot consider. For 
this reason we have designed and developed a low cost robot 
that allows to experimentate and validate our approach. 

All the work presented in this manuscript has been done 
on a real robot. We will briefly describe the robot’s parts as 
long as the essential software developed for control and 
sensor processing.  

The basic part of the mobile robot is consisted by the 
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Rogue Blue educational robot. Several modifications were 
made and new sensors and devices were added since the 
minimal configuration of the initial platform wasn’t suitable 
for experimentation. The sensor suite of the robot is 
consisted from a sonar range device positioned in the center 
in the upper front part and two infrared sensors positioned in 
the lower left and right part of the vehicle. It has two 
odometers one in each wheel and an electronic compass in 
the upper center part. The two wheels of the robot are 
rotating from one servo motor each. The low level control of 
the servo motors and the data acquisition from the sensors 
and the other devices is performed from a board equipped 
with an OOPic microprocessor. The robot has a Bluetooth 
device which allows the communication of the robot with a 
host computer that has a Bluetooth base station attached. The 
robot is also equipped with a device from Digital Solutions 
that allows inter-robot communication without the 
intervention of a base station in cases that the experiments 
require more than one robot. The configuration of the devices 
with which the robot is equipped is presented in fig. 2. 

 

Controller Board

Bluetooth 
Communication 

Device 
Sonar Sensor

Servo Motors

Infrared Sensors 

Odometers

Batteries 

FWCM Communication 
Device Compass

Front 
View

Side
View

 
Fig. 2 Configuration of the devices attached in the custom robotic 

vehicle 
 

The OOPIC board is running a program which allows the 
low level control of the devices and data acquisition from the 
sensors. In a base station a MATLAB session is running and 
it’s exchanging data with the robot. The position calculation, 
the fuzzy logic controller and the genetic algorithm are 
running in the base station. It should be noted that although 
the configuration is a host / slave system, conceptually the 
robot is considered as an autonomous agent. 

For the calculation of the robot’s position the data from the 
odometers are used. The position of the robot is calculated 
based on the equations presented in [13] for this specific type 
of robot. 

 
V. EXPERIMENTAL RESULTS AND ANALYSIS 

 
The experiments conducted in an area with maximum 

width of 3.7 meters and maximum length of 4.5 meters. The 
floor was covered with carpet, in order to minimize the 
sliding effect. The experimentation area and the real robot 
are presented in fig. 3. 

For each fitness function type, we evolved the controllers 
for 80 generations, using the same experimental set up. In 

each generation the goal of the robot was to navigate from an 
initial point to a final target point. The environment is static 
with obstacles in predefined positions. Each individual had 
30 seconds to accomplish its goal and after that the 
experiment was terminated and the robot was repositioned. 

 
Fig. 3 Experimental testbed 

 
An additional parameter was added to the fitness functions 

mainly because the experiments were performed in a real 
robot. This parameter takes into account the activation level 
of each sensor. In case that the mean activation level is less 
than 0.3 (experimentally derived) a penalty value was 
assigned to the fitness functions of the specific individual. 
That was done to avoid cases in which the robot has stuck to 
an obstacle and therefore could not complete the experiment. 
Obviously all individuals who fall in this category have 
limited chances to survive.  
The evolved controllers were tested for various navigation 
conditions and scenarios. Four different sets of experiments 
were conducted, and each individual had one minute to go as 
close as possible to a target point. Several parameters 
concerning the robot movement were monitored. Some of 
them are shown in Table I for the best individuals of each 
type of fitness function. The trajectories followed by the best 
individuals, in certain test cases are presented in Fig. 4 – 7. 

TABLE I 
EXPERIMENTAL RESULTS 

Test Case 1 Aggregate Behavioral Tailored 
Minimum Distance (mm) 63,8980 65,4110 47,8566 
Time (sec) 27,9322 30,5126 27,7254 
Mean Sensor Activation 0,8744 0,8642 0,8799 
Turn Rate 3,7337 3,1252 2,7086 
Mean Lin. Vel.  (cm/sec) 9,39702 8,90375 9,42322 
Test Case 2  
Minimum Distance (mm) 41,8505 59,1457 42,6037 
Time (sec) 42,7507 30,5774 42,1305 
Mean Sensor Activation 0,8926 0,8031 0,8880 
Turn Rate 3,5242 3,6257 3,6288 
Mean Lin. Vel.  (cm/sec) 9,21670 9,00040 9,19336 
Test Case 3  
Minimum Distance (mm) 41,8505 59,1457 42,6037 
Time (sec) 42,7507 30,5774 42,1305 
Mean Sensor Activation 0,8926 0,8031 0,8880 
Turn Rate 3,5242 3,6257 3,6288 
Mean Lin. Vel.  (cm/sec) 9,21670 9,00040 9,19336 
Test Case 4  
Minimum Distance (mm) 125,3659 110,7722 122,1138 
Time (sec) 41,07354 40,2912 44,62946 
Mean Sensor Activation 0,816438 0,81505 0,82027 
Turn Rate 8,042438 7,78897 7,21267 
Mean Lin. Vel.  (cm/sec) 8,254323 8,152524 7,998842 

3871



 

-200 0 200 400 600 800 1000 1200 1400 1600
-500

0

500

1000

1500

2000

2500

 

 
Aggregate

Behavioral
Tailored

 
Fig. 4 Test Case 1 
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Fig. 5 Test Case 2  

 
In order to measure the overall behavior of the controllers 

we introduce a metric of the efficiency of the robot's 
performance. The efficiency metric is given by: 
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where, MD is minimum distance to target, MST is the time 
needed for the minimum distance, MSA is the mean sensor 
activation, MLV is the mean linear velocity, c=1,…i is the 
group of robot controllers considered. The performance of 
each fitness type for all test cases is presented in Table II. 
 

TABLE II 
EFFICIENCY OF THE FITNESS FUNCTION TYPE FOR EACH TEST 

CASE 
 Test Case 1 2 3 4 

Aggregate 3,732 3,715 3,837 3,859 
Behavioral 3,567 3,583 3,816 3,981 

 
EF 

Tailored 4 3,700 3,681 3,778 
 
In order to identify which fitness is affecting certain 
attributes of the robots performance, we conduct the 
following analysis. We calculate the mean EF of each 
function in all test cases by excluding in each case one factor 
i.e minimum distance from target. 
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Fig. 6 Test Case 3 
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Fig. 7 Test Case 4 

 
The cases that we examine are: 

Case 1: 
i

C

MD
MD

iEF
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)( − , (9) 

Case 2: 
i
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)( − , (10) 

Case 3: 
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Case 4: 
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C

i

MLV
MLV

iEF − , (12) 

The results are presented in Table III.  
 

TABLE III 
EFFICIENCY FACTOR'S ANALYSIS 

 Aggregate Behavioral Tailored 
EF 3,786 3,737 3,790 
Case 1 2,878 2,918 2,836 
Case 2 2,905 2,760 2,930 
Case 3 2,789 2,769 2,793 
Case 4 2,787 2,764 2,812 

 
 In all cases except case 1, the tailored fitness function 
outperforms the aggregated which is followed by the 
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behavioral. In genera, it seems that the most suitable fitness 
for this task is the tailored one. The case which behavioral 
outperforms the others was case 1. This is probably due to 
the fact that there was no variable measuring the distance, 
from the target in the behavioral fitness. The other two types 
of functions had this kind of metric which led the evolution 
process in a more target oriented. 
 

VI. DISCUSSIONS AND CONCLUSIONS 
 
Fuzzy logic controllers without appropriate tuning 

represent a pure reactive solution for the mobile robot 
navigation problem. Therefore, evolution processes have 
been extensively used to optimize the structural 
characteristics (mainly membership functions and rules) of 
fuzzy controllers. In these cases, the performance of the 
evolved controller is heavily based on the selected fitness 
function. 

In this paper we examine the impact of the selection of the 
fitness function on the evolution of a fuzzy logic controller, 
together with the navigation performance of a real robotic 
vehicle. We used different types of fitness functions, namely, 
aggregate, behavior and tailored, that represent different 
evolution approaches. In order to evaluate the performance of 
the evolved controllers and investigate how fitness functions 
affect the overall behavior of the vehicle we introduced the 
efficiency factor metric. From the experiments conducted, it 
turned out that the “tailored” type function is more 
appropriate for the navigation problem in static 
environments.  

Future research will include the formulation of a metric for 
the measurement of the efficiency of the performance of a 
team of robot vehicles. We also anticipate studying the 
effects of fitness function selection on controllers that avoid 
dynamically moving obstacles. 
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