
Rotary Drying of Olive Stones: Fuzzy Modeling and Control 
 

N. C. TSOURVELOUDIS, L. KIRALAKIS 
Department of Production Engineering and Management 

Technical University of Crete 
University Campus, Chania 

GREECE 
{nikost, kyralakis}@dpem.tuc.gr 

 
 

Abstract: - A rotary drying process applied to olive stones is described and modeled using fuzzy and neuro 
fuzzy techniques. Heat and material transfer inside the drying cylinder are rather complicated and therefore it 
is difficult to be accurately described. A fuzzy controller is designed based on available expertise and 
knowledge for a given, industrial size, rotary dryer. A second controller is built using the Adaptive Neuro 
Fuzzy Inference System (ANFIS) based on data taken from an empirical model of the dryer under study. Both 
controllers tested for various operation conditions and extensive comparative results are presented.  
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1 Introduction 
Dryers are used to remove water from solid 
substances primarily by introducing hot gases into a 
drying chamber. Among various dryer types, rotary 
dryers are the most commonly used in minerals and 
food industry. Rotary dryers consist of a 
horizontally inclined rotating cylinder. The material, 
which is fed at one end and discharged at the other 
end, is dried by contact with heated air, while being 
transported along the interior of the cylinder. The 
rotating cylinder acts simultaneously as the 
conveying device and stirrer, as may be seen in Fig. 
1. It is known that in the mathematical modeling of 
rotary drying procedure is rather complicated and 
the dynamics involved are non-linear [1], [2]. 
Further, the control of an industrial size rotary dryer 
is not an easy task, mainly because of its size and 
the corresponding long transportation times of the 
particles, and the delays between control action and 
observable results due to these actions. 

In this paper we present a novel approach for the 
control of the rotary drying process applied to olive 
stones. Wet mass of olive stones is available in large 
quantities in olive oil mills after the first extraction 
of oil. Olive stones still contain oil, which can be 
chemically subtracted from the dehydrated/dried 
stones. In order to control the olive stone drying 
process, we examine and compare two approaches 
based on fuzzy logic and neuro-fuzzy techniques, 
respectively. Fuzzy logic is widely used to facilitate 
problems of controlling rotary dryers and kilns. In 
[3] a fuzzy model of a pilot plant rotary dryer has 
been developed. The developed fuzzy model shows 
a good correlation between the model output and 

real output but it needs further development. In [2], 
a fuzzy PI-like controller along with a PI-like neural 
network have been developed and tested for a 
laboratory size rotary dryer. Both controllers act as 
supervisors of the overall system. The fuzzy 
controller includes three inputs and one output, 
while the neural net is a multilayered forward 
network and its training is based on the 
backpropagation algorithm. The data for training 
and testing were collected from a pilot plant rotary 
dryer. In [4] a neuro-fuzzy control approach and 
fuzzy clustering techniques are presented and their 
applicability in calcite drying is demonstrated. A 
comparative study is also presented in [4] based on 
simulations with a pilot plant dryer and further 
experimentation of the proposed system is suggested 
with a real size industrial dryer.  

The approach we suggest in this work differs 
from similar works in several design and structural 
issues, such as, the number of input/output 
parameters, the material to be dried, and the size of 
rotary dryer under study. Here we examine and 
compare fuzzy and neuro fuzzy based techniques for 
the control of olive stones rotary drying. A fuzzy 
logic controller is designed based on the knowledge 
acquired from human experts. A neuro-fuzzy 
controller is designed based on numerical data of a 
real system. The paper is organized as follows. 
Section 2 describes the drying process of olive 
stones in a real factory. Section 3 describes the 
mathematical modeling of the drying process. In this 
section, two different approaches, namely, the fuzzy 
approach based on Mamdani type controllers and the 
neuro-fuzzy approach based on Takagi-Sugeno type 
controllers, are described. In Section 4 experimental 



and comparison results are presented. Finally, in 
Section 5, we comment on the proposed approach 
and suggest potential future research topics. 

 
 
2 The Drying Process 
After the first extraction of oil in the oil mills an oily 
mass of olive stones is available for further 
processing. Olive stones still contain oil, which can 
be chemically subtracted from the dehydrated/dried 
stones. The dried stone is mixed with hexane, which 
results to the subtraction of oil from the olive stone. 
Then the hexane, which is dangerous for the public 
health, is separated from the oil. Here we will deal 
only with the drying of olive stones, which is an 
important phase of the oil extraction procedure. 

The drying procedure is described briefly as 
follows. The wet mass coming out of the oil mills 
contains olive stones that have to be dried. This 
mass is fed in a rotary cylinder, as shown in Fig. 1, 
where is dried by contacting with heated air and hot 
surfaces. The temperature inside the dryer, which is 
usually made from steel, may exceed 700 oK. The 
rotary dryer has a slight inclination (about two 
degrees) and except from drying the stone, acts as a 
conveying device and stirrer. The flow of the air 
inside has the same direction with the dried material. 
To facilitate fast drying, metallic fins (shown in Fig. 
1) are used inside the rotating cylinder so as to blend 
the mass of olive stones. The outgoing dry stone is 
carried from the dryer for additional processing. 

Typical rotary drying equipment is graphically 
presented in Fig. 1. The raw material (olive stones) 
is stored at the front of the rotating cylinder. The 
moisture of olive stones prior to drying varies from 
48% to 54%. The goal of the drying process is to 

reduce this moisture to 8%. This is important 
because it affects the quality of the final product as 
well as the safety of the plant. Values of final 
moisture above 10% are highly associated with 
hexane retention (and the associated potential health 
effects) in the final product. On the other hand, low 
(below 8%) moisture levels increase the chance of 
fire inside the rotary dryer. 

The control approach we present in the next 
section, is based on experimentation and knowledge 
extraction made at the A.B.E.A S.A. company 
located at Chania, Greece. The rotary dryer under 
study is about 22 meters long, its diameter is 2.5 
meters and it rotates with speed which is about 3.5 
rotations per minute. Inside the cylinder, there are 
28 horizontal fins, having average width 0.25 meters 
and mean distance between them about 0.28 meters. 
 
 
3 Modeling and Control 
Rotary drying can be mathematically described by a 
general differential equation, in which moisture is a 
function of time and dimension as follows  
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where, x represents the moisture of the olive stone, l 
is the axial coordinate of the dryer, v: is the linear 
velocity of the olive stones in the dryer and t is 
drying time. If (1) is used under realistic 
assumptions, (such as, varying drying air velocity, 
unknown size distribution of olive stones and not 
constant water evaporation along the dryer), it leads 
to a complex time varying dynamic model which 
involves parameters that is difficult to be accurately 
measured [2].  

 

Fig. 1: Material and air flow in the structural parts of a rotary dryer.  



The goal of the control system is to achieve the 
desired moisture in the dried product. A practical 
way to measure the percentage of moisture in the 
final product, or simply, the final moisture xf , is 

weightproductdried
waterremainingofweight

x f 100= . (2) 

The final moisture xf may be associated with 
physical parameters of the drying process as in the 
following equation:  
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where, xα is the initial moisture of the olive’s stone, 
A represents the quantity of olive stone enters the 
rotary dryer, T is the temperature in the drying 
cylinder where l is its length. Notation ( )if i is used 
to represent a generic function. According to 
equation (3), the value of final moisture depends on 
the initial moisture (which is given and cannot be 
controlled), the quantity of product in the rotating 
cylinder and the heat transfer rate inside the 
cylinder.  

In order to control the system, the parameters 
that affect the drying process must be identified. For 
the system under study, these parameters are the 
temperature through the rotating dryer and the 
quantity (feed rate) of the olive’s stone that is 
entering the system at a given time interval. The 
control methodology presented in the next 
paragraph, makes adjustments to the control 
parameters (namely, temperature and feed rate) 
based on the observation of the following input 
variables: 
1. The difference (error) between the desired 

(target) moisture of the system and the current 
moisture. 

2. The initial moisture that is the moisture of 
material entering the system. 
 

3.1 Fuzzy Logic Approach 
Fuzzy logic is widely used to facilitate problems of 
controlling rotary dryers [2]. Most of the rotary 
dryers are controlled manually based on the 
experience of the operator. Today it is known that 
fuzzy logic offers the mathematical framework that 
allows for a simple knowledge representation of the 
production control principles in terms of IF-THEN 
rules. The “IF-part” describes conditions under 
which the rule is applicable and forms the 
composition of the inputs. The consequent (THEN-
part) gives the response or conclusion that should be 
taken under these conditions. A two-input 
(antecedent) rule of the Mamdani type has the form: 

IF X is A AND Y is B THEN Z is C, where X, Y are 
the input and Z is the output variable, and A, B and 
C their linguistic variations, respectively, that are 
fuzzy sets with certain membership functions [5]. 
The crisp control action is obtained through a 
defuzzification method, which in most applications, 
calculates the centroid of the output fuzzy set. 

The controller designed here adjusts the 
temperature of the fumes and the quantity of the 
material entering the system. An example of the 
expert knowledge describes the control objective 
can be summarized in the following statement: If the 
difference between the desired moisture of olive’ 
stone and its current moisture is Low AND the 
moisture of olive’s stone entering the system is High 
THEN the temperature of fumes should be High 
AND the feed rates Relatively High. 

The above knowledge may be more formally 
represented by fuzzy rules of the following form: IF 
error is LA(k) AND xa is LB(k) THEN T is LC(k) AND 
A is LD(k) where k is the rule number, LA is a 
linguistic value of the variable error with term set 
A= {Dangerous High, High, Relative High, Perfect, 
Low, Relative Low}, LB is a linguistic value of the 
variable xa with term set B= {High, Medium, Low}, 
LC is a linguistic value of the variable T 
(temperature) with term set C= {Very Low, Low, 
Relative High, Medium, Relative High, High, Very 
High} and LD is a linguistic value of the variable A 
(feed_rate) with term set D= {Very Low, Low, 
Relative High, Medium, Relative High, High, Very 
High}. The temperature T at a given time instant is 
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while the quantity A that enters (feed rate) the dryer 
is  
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where ISf ( , )aerror x  represents a fuzzy inference 
system, that takes as inputs the out coming moisture 
error and the initial moisture xα, of the incoming 
olive’s stone. The membership functions * ( )C Tµ  and 

* ( )D Aµ  which are given by 

( ) max min[ ( , ), ( , , )]( ),
T error x error x TC AND a k aFRerror xa

∗ ∗µ = µ µ  (6) 

( ) max min[ ( , ), ( , , )]( ),
A error x error x AD AND a k aFRerror xa

∗ ∗µ = µ µ  (7) 

where ( , )AND aerror x∗µ  is the membership function 
of the conjunction of the inputs while 



( ) ( , , )k aFR error x Tµ  and ( ) ( , , )k aFR error x Aµ  are the 
membership functions of the k-th activated rule. 
That is 
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∗ ∗ ∗µ =µ ∧µ    (8) 

and 
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In equations (8), (9), (10), ( )A error∗µ  represents 
the membership function of the moisture deviation, 
that is ( )argt ete e t− , and ( )B ax∗µ  is the membership 
function of the initial moisture.  

The membership functions that are used as inputs 
variables are presented in Fig. 2a and 2b. Fig. 2a 
models the variable “moisture error” and Fig. 2b 
presents the moisture of olive stones entering the 
system. Fig. 2c and 2d show the membership 
functions of the drying air temperature and quantity 
of material entering the system, respectively. 
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Fig. 2: Membership functions of variables: a) Moisture 
error, b) Initial moisture, c) Temperature and d) Feed 

Rate. 
 
3.2 Neuro-Fuzzy Approach 
The correct choice of membership function is by no 
means trivial and plays a crucial role in the success 
of fuzzy control applications. A point of criticism 
for the fuzzy controller presented in the previous 
paragraph, is that membership functions are 
heuristically selected, based on trial and error 
experimentation. In this paragraph, we utilize a well 
known systematic procedure, the Adaptive Neuro 
Fuzzy Inference System (ANFIS) [6], for the design 
of the fuzzy controller. The input/output variables 

and the design of the overall control system is 
shown in Fig. 3. The type and position of sensor that 
should be installed to facilitate experimental testing, 
is also presented in Fig. 3. A similar attempt for 
laboratory size rotary dryer is described in [4]. 
ANFIS automatically constructed a fuzzy controller 
using about 1000 input-output data sets. 
Experiments were conducted at the industrial size 
rotary dryer of ABEA S.A., Chania, Crete, Greece. 
The drying cylinder length is 22m, its diameter is 
2.5m and rotates about 3.5 times per minute.  

 

 
Fig. 3: Neuro-fuzzy control block diagram 

 
The plant model we used for simulations is derived 
experimentally and maybe summarized in the 
following equation:  
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where, xf is the final moisture of the olive stones, xα 
is their initial, A is the feed rate (ton/h) or the 
product quantity enters in the dryer, T is the 
temperature of the drying air (oK), α1 represents the 
convection heat transfer coefficient from heated 
surface to olive stone accumulations, (W/m2 oK), α2 
is the surrounding sphere heat transfer coefficient 
(W/m2 oK) [1] and ci, (i=1,2,3,4), represent constant 
values calculated for the dryer under study.  

Neuro-fuzzy controllers were tested for various 
shapes of membership functions. In all cases 
presented in Table 1 and Table 2, the training lasted 
the same time epochs.  

All controllers tested had the same number of 
membership functions per input/output variable. 
Experiments were conducted, for various 
temperature mean values, feed rates and initial 
moisture levels. Table 2 presents the mean control 
error and error’s variance for certain types of 
membership functions. 



Table 1: Test results for initial temperature 500 oK and 
feed rate 6 tons per hour. 

Initial Moisture 
48-50% 

Initial Moisture 
50-52% 

Initial Moisture 
52-54% 

 
 
Membership 
function Type 

Mean 
Error 

Variance Mean 
Error 

Variance Mean 
Error

Variance

Bell-shaped 0.116 0.0054 -0.09 0.145 -0.348 0.0177
Triangular 0.04 0.0056 0.024 0.00084 -0.15 0.0074

Gauss 0.06 0.0274 0.034 0.0125 -0.017 0.002 
 

Table 2: Test results for initial temperature 550 oK and 
feed rate 7.5 tons per hour. 

Initial Moisture 
48-50% 

Initial Moisture 
50-52% 

Initial Moisture 
52-54% 

 
 
Membership 
function Type 

Mean 
Error 

Variance Mean 
Error 

Variance Mean 
Error

Variance

Bell-shaped 0.1 0.004 -0.142 0.07 -0.335 0.0177
Triangular 0.006 0.0059 0.04 0.0016 -0.1 0.009 

Gauss 0.015 0.0329 0.05 0.0146 0.0001 0.0038

From the experiments conducted we may make 
the following observations: a) The time needed by 
the controller to approach the target value (final 
moisture 8%) is the same for almost all test cases, b) 
Triangular membership functions result to less 
oscillation at the output, in comparison to the other 
membership shapes we tested. In most cases the 
controller with triangular membership functions 
performed better than the others. Therefore, in the 
comparative results, presented in the next section, 
all membership functions have triangular shape. 

 
 

4 Results and Comparisons 
Two controllers, the one designed based on 
experience (FUZZY), and the other based on 
experimental data (neuro-fuzzy, ANFIS) are 
compared in this section. Extensive comparative 
study has been performed for various testing 
conditions.  

In the first set of experiments, the initial moisture 
of the olive stone remained the same (52-
54%).Three test cases are graphically presented in 
figures 4 to 6. Fig. 4 presents the response of the 
drying system for Test Case 1: initial temperature in 
the drying cylinder is 515 oK and olive stone feed 
rate is 8.1 tons per hour. Fig. 5 presents the response 
of the drying system for Test Case 2: initial 
temperature in the drying cylinder is 550 oK and 
olive stone feed rate is 7.6 tons per hour. Fig. 6 
presents the response of the drying system for Test 
Case 3: initial temperature in the drying cylinder is 
500 oK, while the olive stone feed rate is 8.5 tons per 
hour. 

In the second set of experiments, the initial 
temperature and the feed rated remained constant. 
That is: initial temperature 550 oK and feed rate 8 

ton/hour. The controller’s performance is examined 
for three initial moisture variation internals, namely, 
48-50%, 50-52% and 52-54%. These intervals 
represent the actual variations of the initial moisture 
of olive stones. Fig. 7 presents the response of the 
drying system for Test Case 4: initial moisture 
randomly varies from 48 to 50%. In practice, 
depending on the measuring device accuracy, the 
variation of the initial moisture may look like in Fig. 
8. 
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Fig. 4: Final moisture variation for Test Case 1 (initial 

temperature: 515 oK, and feed rate: 8.1 tons/hour). 
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Fig. 5: Final moisture variation for Test Case 2 (initial 

temperature: 550 oK, and feed rate: 7.6 tons/hour). 
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Fig. 6: Final moisture variation for Test Case 3 (initial 

temperature: 500 oK, and feed rate: 8.5 tons/hour). 
 



Fig. 9 presents the response of the drying system 
for Test Case 5. In this case the initial moisture 
varies from 50% to 52%, as shown in Fig. 10. 
System’s response for initial water content between 
52 to 54% is shown in Fig. 11 (Test Case 6). The 
actual initial moisture variation for test case 6, is 
presented in Fig. 12. The mean error and variance of 
the final moisture, for a test case with initial 
temperature 500 oK and feed rate 5.5 ton/h are 
presented in the Table 3. 
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Fig. 7: Final moisture variation for Test Case 4 (initial 

moisture varies from 48 to 50%). 
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Fig. 8: Initial moisture monitoring for the Test Case 4.  

2 4 6 8 10 12 14 16 18 20
7

8

9

10

11

12

13

14

15

Time (min)

M
oi

st
ur

e 
(%

)

Fuzzy
ANFIS

 
Fig. 9: Final moisture for Test Case 5 (initial moisture 

from 50 to 52%). 
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Fig. 10: Initial moisture monitoring for the Test Case 5.  
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Fig. 11: Final moisture for Test Case 6 (initial moisture 

from 52 to 54%). 
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Fig. 12: Initial moisture monitoring for the Test Case 6.  

 
Table 3: Control performance for different initial 

moisture levels (initial temperature 500 oK and feed 
rate 5.5 ton/h) 

FUZZY ANFIS  
Initial 

moisture Mean Error Variance Mean Error Variance 

48-50% 0.086 0.015 0.007 0.003 
50-52% -0.213 0.0077 0.029 0.0003 
52-54% -0.099 0.0465 -0.149 0.0048 

 



Another test case which shows the differences in the 
control output of the fuzzy and the neuro-fuzzy 
systems, with respect to a wider range of 
temperatures and feed rates, is presented in Fig. 13. 
It may be seen that the neuro-fuzzy controller 
achieves more concentrated output around the target 
value (8% moisture) for lower temperatures and 
feed rates. Both controllers started with 520 oK in 
the dryer, feed rate 6 tons per hour and olive stone’s 
initial moisture between 52% and 54%. The fuzzy 
controller increases both temperature and feed rate 
and the control output is more spread around the 
target value of moisture. This behavior might be 
useful in high demand seasons (as achieves higher 
production rates) but tends to consume more energy 
and to divert from the desired final moisture, 
compared to the neuro-fuzzy approach. 
 

Fig. 13: Final moisture values for a test case with initial 
conditions: moisture 52-54%, feed rate 6 ton/h and 

temperature 520 oK. 

Additional remarks based on results observations 
and statistical analysis, maybe the following: 
1. The neuro-fuzzy controller gives smaller mean 

error of the final moisture in two out of the 
three test cases presented in Table 3. The pure 
fuzzy approach generally gives better results 
when the initial moisture is higher (52-54%). 
Although the mean error in the achieved final 
moisture is smaller, the variance is larger. On 
the other hand, the value of variance of the 
final moisture that derived from the neuro-
fuzzy controller is small in all the cases, which 
indicates a more stable behavior in all ranges 
of initial moisture. 

2. Training of the ANFIS controller is based on 
data that might not model the behavior of the 
drying system, under all working conditions. In 
this sense, the results of the pure fuzzy 

controller may cover more realistic operation 
cases.  

 
 

5 Conclusions 
The production of olive oil is the desired outcome of 
the rotary drying process of olive stones. After their 
collection from the oil mills, olive stones are used as 
raw material for the drying process. The dried stones 
are mixed with hexane, which results to the 
subtraction of oil from the stones. 

Controlling of an industrial size rotary dryer is 
not an easy task, mainly because of its size and the 
corresponding long transportation times, and the 
delays between control action and observable results 
due to these actions. In this paper, two different 
techniques were used for the control of the drying 
process of olive stones. A fuzzy logic controller 
designed based on expert knowledge. A neuro fuzzy 
controller was designed based on data from a real 
dryer. For the training of neuro-fuzzy controller the 
Adaptive Neuro Fuzzy Inference System (ANFIS) 
was used.  

A set of experiments was conducted with the 
neuro-fuzzy controller and various types of 
membership functions. The shape of membership 
functions and “if-then” rules parameters were tuned 
from data. Another set of experiments was 
conducted to compare the performance of the two 
different controllers at the drying process control. 
Our approach differs from similar approaches in 
terms of dryer’s size and material used for drying.  

In the future, it will be interesting to incorporate 
more variables in the control scheme, such as, the 
rotation speed of the drying cylinder. The 
consideration of more realistic modeling 
assumptions, such as the non-constant temperature 
drop in the dryer, it will be also a topic of future 
work with significant practical uses.  
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