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Abstract: - Olive oil can be extracted from dried olive stones. Drying of olive stones is a procedure difficult to 
model. The equations describe heat transfer inside the drying cylinder are highly non linear and therefore the 
mathematical models used to simulate the drying process are complicated. Here we suggest fuzzy and neuro-
fuzzy techniques to control the drying procedure. A fuzzy controller is designed based on available expertise, 
while a neuro-fuzzy controller is built using the Adaptive Neuro Fuzzy Inference System (ANFIS) based on 
experimental data. Both controllers tested in various operation conditions and extensive comparative results 
are presented.  
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1 Introduction 
Dryers can be used to remove water from solid 
substances primarily by introducing hot gases into a 
drying chamber. Among various dryer types, rotary 
dryers are the most commonly used in minerals and 
food industry. Rotary dryers consist of a 
horizontally inclined rotating cylinder. The material, 
which is fed at one end and discharged at the other 
end, is dried by contact with heated air, while being 
transported along the interior of the cylinder. The 
rotating cylinder acts simultaneously as the 
conveying device and stirrer, as shown in Fig. 1.  

 
Fig. 1: Schematic representation of a cross-flow rotary 

dryer 

In this paper we present a novel approach for the 
control of the rotary drying process applied to olive 
stones. It is known that the mathematical modelling 
of rotary drying is rather complicated and the 
dynamics involved are non-linear [1], [6]. The 
proposed approach is based on fuzzy logic and 
neuro-fuzzy techniques. Fuzzy logic and neuro-
fuzzy techniques have been proven that can 
accommodate these kinds of procedures [1]-[4]. A 

fuzzy logic controller is designed based on the 
knowledge acquired from human experts. A neuro-
fuzzy controller is designed based on numerical data 
of the real system. These data sets were used to train 
a Sugeno-type fuzzy system through the Adaptive 
Neuro Fuzzy Inference System (ANFIS) [7].  

The paper is organized as follows. Section 2 
describes the drying process of olive stones in a real 
factory. Section 3 describes the mathematical 
modeling of the drying process. In this section two 
different approaches for the controller design are 
described. The fuzzy approach based on Mamdani 
type controllers and the neuro-fuzzy approach based 
on Takagi-Sugeno type controllers. In section 4 
experimental and comparison results are described. 
Finally, section 5 comments on the proposed 
approach and suggests potential future research 
topics. 
 
 
2 Olive Stone Drying Process 
Wet mass of olive stones is available in large 
quantities in olive oil mills after the first extraction 
of oil. Olive stones still contain oil, which can be 
chemically subtracted from the dehydrated/dried 
stones.  

The olive stones are dried by contact with heated 
air, while being transported along the interior of a 
rotating cylinder (Fig. 1), with the rotating shell 
acting as the conveying device and stirrer. Moisture 
of olive stone at the input of drying cylinder may 
vary from 48% to 54%. The drying process has to 
reduce this moisture to 8%. The reduction of 
moisture is critical because affects the quality of the 
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final product as well as the safety of the plant. 
Values of final moisture above 10% are highly 
associated with hexane retention in the final product, 
which is dangerous for public health. On the other 
hand, low (below 8%) moisture levels increase the 
chance of fire inside the rotary dryer. 

The drying procedure is described briefly as 
follows. The olive stone is fed into the rotary dryer 
in a rate up to 17 tons per hour. The temperature in 
the dryer, which is usually made from steel, may 
exceed 700 oK. The flow of the air inside has the 
same direction with the dried material. Olive stones 
are dried mainly by contact with heated air and 
surfaces inside the rotating cylinder. The rotary 
dryer except from drying the stone is also 
transferring it, as shown in Figure 1. The wings are 
used to stir the stone inside the dryer (see dryer’s 
cross section in Figure 1). The product is moving 
because of the rotation of the dryer and its slight 
inclination (about two degrees). The out going dry 
stone is carried from the dryer for additional 
processing. 
 
 
3 Modeling and Control  
Rotary drying can be mathematically described by a 
general differential equation, in which moisture is a 
function of time and dimension as follows  
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where, x represents the moisture of the olive stone, l 
is the axial coordinate of the dryer, v: is the linear 
velocity of the olive stones in the dryer and t is 
drying time. It is known that if (1) is used under 
realistic assumptions, (such as, varying drying air 
velocity, unknown size distribution of olive stones 
and not constant water evaporation along the dryer) 
leads to a complex time varying dynamic model 
which involves parameters that is difficult to be 
accurately measured [1].  

The goal of the control system is to achieve the 
desired moisture in the dried product. A practical 
way to measure the percentage of moisture in the 
final product, or simply, the final moisture xf , is 

weightproductdried
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The final moisture xf may be associated with 
physical parameters of the drying process as in the 
following equation:  
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where, xα is the initial moisture of the olive’s stone, 
A represents the quantity of olive stone enters the 
rotary dryer, T is the temperature in the drying 
cylinder where l is its length. Notation ( )if i is used 
to represent a generic function. According to 
equation (3), the value of final moisture depends on 
the initial moisture (which is given and cannot be 
controlled), the quantity of product in the rotating 
cylinder and the heat transfer rate inside the 
cylinder.  

In order to control the system, the parameters 
that affect the drying process must be identified. For 
the system under study, these parameters are the 
temperature through the rotating dryer and the 
quantity of the olive’s stone that is entering the 
system (feed rate) at a given time interval. The 
control methodology presented in the next 
paragraph, makes adjustments to the control 
parameters (namely, temperature and feed rate) 
based on the observation of the following input 
variables: 
1. The difference (error) between the desired 

(target) moisture of the system and the current 
moisture. 

2. The initial moisture that is the moisture of 
material entering the system. 
 

3.1 Fuzzy Logic Approach 
Fuzzy logic is widely used to facilitate problems of 
controlling rotary dryers [3], [4]. Most of the rotary 
dryers are controlled manually based on the 
experience of the operator. Today it is known that 
fuzzy logic offers the mathematical framework that 
allows for a simple knowledge representation of the 
production control principles in terms of IF-THEN 
rules. The “IF-part” describes conditions under 
which the rule is applicable and forms the 
composition of the inputs. The consequent (THEN-
part) gives the response or conclusion that should be 
taken under these conditions. A two-input 
(antecedent) rule of the Mamdani type has the form: 
IF X is A AND Y is B THEN Z is C, where X, Y are 
the input and Z is the output variable, and A, B and 
C their linguistic variations, respectively, that are 
fuzzy sets with certain membership functions [5]. 
The crisp control action is obtained through a 
defuzzification method, which in most applications, 
calculates the centroid of the output fuzzy set. 

The controller designed here adjusts the 
temperature of the fumes and the quantity of the 
material entering the system. An example of the 
expert knowledge describes the control objective 
can be summarized in the following statement: If the 
difference between the desired moisture of olive’ 



stone and its current moisture is Low AND the 
moisture of olive’s stone entering the system is High 
THEN the temperature of fumes should be High 
AND the feed rates Relatively High. 

The above knowledge may be more formally 
represented by fuzzy rules of the following form: IF 
error is LA(k) AND xa is LB(k) THEN T is LC(k) AND 
A is LD(k) where k is the rule number, LA is a 
linguistic value of the variable error with term set 
A= {Dangerous High, High, Relative High, Perfect, 
Low, Relative Low}, LB is a linguistic value of the 
variable xa with term set B= {High, Medium, Low}, 
LC is a linguistic value of the variable T 
(temperature) with term set C= {Very Low, Low, 
Relative High, Medium, Relative High, High, Very 
High} and LD is a linguistic value of the variable A 
(quantity) with term set D= {Very Low, Low, 
Relative High, Medium, Relative High, High, Very 
High}. The temperature T at a given time instant is 
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while the quantity A that enters (feed rate) the dryer 
is  
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where  represents a fuzzy inference 
system, that takes as inputs the out coming moisture 
error and the initial moisture x

ISf ( , )aerror x

α, of the incoming 
olive’s stone. The membership functions  and * ( )C Tµ

* ( )D Aµ  which are given by 
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where  is the membership function 
of the conjunction of the inputs while 

 and  are the 
membership functions of the k-th activated rule. 
That is 
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In equations (8), (9), (10),  represents 
the membership function of the moisture deviation, 
that is 

(A error∗µ

( )argt ete e− t , and ( )B ax∗µ  is the membership 
function of the initial moisture.  

The membership functions that are used as inputs 
variables are presented in Fig. 2a and 2b. Fig. 2a 
models the variable “moisture error” and Fig. 2b 
presents the moisture of olive stones entering the 
system. Fig. 2c and 2d show the membership 
functions of the drying air temperature and quantity 
of material entering the system, respectively. 
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Fig. 2: Membership functions of variables: a) Moisture 
error, b) Initial moisture, c) Temperature and d) Feed 

Rate. 
 
3.2 Neuro-Fuzzy Approach 
The correct choice of membership function is by no 
means trivial and plays a crucial role in the success 
of fuzzy control applications. A point of criticism 
for the fuzzy controller presented in the previous 
paragraph, is that membership functions are 
heuristically selected, based on trial and error 
experimentation. In this paragraph, we utilize a well 
known systematic procedure, the Adaptive Neuro 
Fuzzy Inference System (ANFIS) [7], for the design 
of the fuzzy controller. A similar attempt for 
laboratory size rotary dryer is described in [1]. 
ANFIS automatically constructed a fuzzy controller 
using a set of about 1000 input-output data. 
Experiments were conducted at the industrial size 
rotary dryer of ABEA S.A., Chania, Crete, Greece. 
The drying cylinder length is 22m, its diameter is 
2.5m and rotates about 3.5 times per minute.  

Neuro-fuzzy controllers were tested for various 
shapes of membership functions. In all cases 
presented in Table 1 and Table 2, the training lasted 
the same time epochs.  

All controllers tested had the same number of 
membership functions per input/output variable. 



Experiments were conducted, for various 
temperature mean values, feed rates and initial 
moisture levels. Table 2 presents the mean control 
error for various membership function shapes. 

Table 1: Test results for initial temperature 500 oK and 
feed rate 6 tons per hour. 

Initial Moisture 
48-50% 

Initial Moisture 
50-52% 

Initial Moisture 
52-54% 

 
 
Membership 
function Type 

Mean 
Error 

Variance Mean 
Error 

Variance Mean 
Error

Variance

Bell-shaped 0.116 0.0054 -0.09 0.145 -0.348 0.0177
Triangular 0.04 0.0056 0.024 0.00084 -0.15 0.0074

Gauss 0.06 0.0274 0.034 0.0125 -0.017 0.002 
 

Table 2: Test results for initial temperature 550 oK and 
feed rate 7.5 tons per hour. 

Initial Moisture 
48-50% 

Initial Moisture 
50-52% 

Initial Moisture 
52-54% 

 
 
Membership 
function Type 

Mean 
Error 

Variance Mean 
Error 

Variance Mean 
Error

Variance

Bell-shaped 0.1 0.004 -0.142 0.07 -0.335 0.0177
Triangular 0.006 0.0059 0.04 0.0016 -0.1 0.009 

Gauss 0.015 0.0329 0.05 0.0146 0.0001 0.0038

From the experiments conducted we may make 
the following observations: a) The time needed by 
the controller to approach the target value (final 
moisture 8%) is the same for almost all test cases. b) 
Selection of triangular membership functions results 
to less oscillation at the output, in comparison to the 
other two membership shapes we tested. In most 
cases the controller with triangular membership 
functions performed better than the others. 

In the comparative results, presented in the next 
section, all membership functions of both (pure 
fuzzy and neuro-fuzzy) controllers have triangular 
shape. 

 
 

4 Results and Comparisons 
Two controllers, the one designed based on 
experience (FUZZY), and the other based on 
experimental data (neuro-fuzzy-ANFIS) are 
compared in this section. Extensive comparative 
study has been performed for various testing 
conditions.  

In the first set of experiments, the initial moisture 
of the olive stone remained the same (50-
52%).Three test cases are graphically presented 
here. Fig. 3 presents the response of the drying 
system for Test Case 1: initial temperature in the 
drying cylinder is 550 oK and olive stone feed rate is 
10 tons per hour. Fig. 4 presents the response of the 
drying system for Test Case 2: initial temperature in 
the drying cylinder is 480 oK and olive stone feed 
rate is 5 tons per hour. Fig. 5 presents the response 
of the drying system for Test Case 3: initial 

temperature in the drying cylinder is 520 oK, while 
the olive stone feed rate is 6.5 tons per hour. 
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Fig. 3: Final moisture variation for Test Case 1 (initial 

temperature: 550 oK, and feed rate: 10 tons/hour). 
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Fig. 4: Final moisture variation for Test Case 2 (initial 

temperature: 480 oK, and feed rate: 5 tons/hour). 
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Fig. 5: Final moisture variation for Test Case 3 (initial 

temperature: 520 oK, and feed rate: 6.5 tons/hour). 
 

In the second set of experiments, the initial 
temperature and the feed rated remained constant. 
That is: initial temperature 550 oK and feed rate 8 
tons/hour. The controller’s performance is examined 
for three initial moisture variation internals, namely, 
48-50%, 50-52% and 52-54%. These intervals 
represent the actual variations of the initial moisture 



of olive stones. Fig. 6 presents the response of the 
drying system for Test Case 4: initial moisture 
randomly varies from 48 to 50%. In practice, 
depending on the measuring device accuracy, the 
variation of the initial moisture may look like in Fig. 
7.  
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Fig. 6: Final moisture variation for Test Case 4 (initial 

moisture varies from 48 to 50%). 
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Fig. 7: Initial moisture monitoring for Test Case 4.  

 
Fig. 8 presents the response of the drying system 

for Test Case 5. In this case the initial moisture 
varies from 50% to 52%, as shown in Fig. 9. 
System’s response for initial water content between 
52 to 54% is shown in Fig. 10 (Test Case 6). 

The statistical values of the final moisture, for 
the test case 4, that have been derived from the two 
controllers Fuzzy and Neuro-fuzzy are presented in 
the Table 3. 

Table 3: Controller’s Performance for different initial 
moisture levels (initial temperature 550 oK and feed 

rate 8 tons/hour) 
FUZZY ANFIS  

Initial 
moisture Mean Error Variance Mean Error Variance 

48-50% 0.086 0.015 0.007 0.003 
50-52% -0.213 0.0077 0.029 0.0003 
52-54% -0.099 0.0465 -0.149 0.0048 
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Fig. 8: Final moisture for Test Case 5 (initial moisture 

from 50 to 52%). 
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Fig. 9: Initial moisture monitoring for Test Case 5.  
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Fig. 10: The final moisture for two different variances of 

the initial moisture from 52 to 54%. 

Some observation based on all test cases and 
statistical analysis presented, maybe the following: 
1. The neuro-fuzzy controller gives smaller mean 

error of the final moisture in two out of the 
three test cases (Table 3).  

2. The pure fuzzy approach gives better results 
when the initial moisture is higher (52-54%). 
Although the mean error in the achieved final 
moisture is smaller, the variance is larger. On 
the other hand, the value of variance of the 



final moisture that derived from the neuro-
fuzzy controller is small in all the cases, which 
indicates a more stable behavior in all ranges 
of initial moisture. 

3. Training of the ANFIS controller is based on 
data that might not model the behavior of the 
drying system, under all working conditions. In 
this sense, the results of the pure fuzzy 
controller may cover more realistic operation 
cases.  

 
 

5  Conclusions 
The production of olive oil is the desired outcome of 
the rotary drying process of olive stones. After the 
collection of olive stone from the oil mills, it’s used 
as raw material for the drying process. The dried 
stone is mixed with hexane, which results to the 
subtraction of oil from the stone. 

Controlling of an industrial size rotary dryer is 
not an easy task, mainly because of its size and the 
corresponding long transportation times of the 
particles, and the delays between control action and 
observable results due to these actions. In this paper, 
two different techniques were used for the control of 
the drying process of olive stones. A fuzzy logic 
controller designed based on expert knowledge. For 
the training of neuro-fuzzy controller the Adaptive 
Neuro Fuzzy Inference System (ANFIS) was used 
based on data of the real system. 

A set of experiments was conducted with the 
neuro-fuzzy controller and various types of 
membership functions. The shape of membership 
functions and “if-then” rules parameters were tuned 
from data. Another set of experiments was 
conducted to compare the performance of the two 
different controllers at the drying process control. 
The consequences that derived from most of tests 
show the supremacy of the controller that was 
designed based on data. 

In the future, it will be interesting to incorporate 
more variables in the control scheme, such as, the 
rotation speed of the drying cylinder.  
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