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1. Introduction 
 

Unmanned robotic vehicles are capable of performing desired tasks in 
unstructured, uncertain and potentially hostile environments. They may be remotely-
operated or function (semi-) autonomously without human intervention. However, it 
will long before unmanned robot vehicles function as completely autonomous entities 
in diverse environments. Current unmanned vehicles adhere to different levels of 
autonomicity as defined by existing technology limitations and used sensors. 
Important operational characteristics related to unmanned vehicle functionality 
(aerial, aquatic or terrestrial), include the following:  
Perception: Acquire and use knowledge about the environment and itself. This is 

done by taking measurements using various sensing devices and then extracting 
meaningful information that should be used in all later tasks (such as localization, 
planning, collision free motion control, recharging, etc).  

Intelligence: Operate for a considerable time period without human intervention. 
This is associated with the learning and inference capabilities, which of the vehicle 
should have to be able to adapt (its behavior or/and shape) to the environment.  

Action: Travel from point A to point B. The vehicle should utilize predefined and 
acquired knowledge to move in dynamic environments without involving humans 
in the navigation loop. 
In robotics, autonomy is mainly associated with navigation issues. From a 

conceptual point of view, autonomous navigation of robotic vehicles may be 
achieved via continuous interaction between perception, intelligence and action, as 
shown in Figure 1.  

 

 
Fig. 1: Autonomous navigation conceptual loop. 

 
Navigation of autonomous robotic vehicles in obstacle filled dynamic 

environments requires derivation and implementation of efficient real-time sensor 
based controllers. Effective control algorithms for autonomous navigation, should 
imitate the way humans are operating manned or similar vehicles. Considering the 
environment uncertainty that is difficult if not impossible to model, fuzzy logic is one 



of the most widely used mathematical tools for autonomous vehicle navigation 
(Driankov & Saffiotti, 2001). Fuzzy logic techniques have already been used and are 
being used currently for autonomous navigation of ground (indoors (Aguire & 
Gonzalez, 2000; Doitsidis, et al., 2002; Goodridge & Luo, 1994; Ishikawa, 1991; Li, 
1994; Oriolo, et al., 1998; Pin & Watanabe, 1994; Tsourveloudis, et al., 2001; 
Tunstel, 1996) and outdoors (Hagras, et al., 2001; Seraji & Howard, 2002; Valavanis, 
et al., 2005), aerial (fixed (Doitsidis, et al., 2004; Nikolos, et al., 2003a) and rotary 
wings (Amaral, 2001; Hoffmann, et al., 1999; Kadmiry & Driankov, 2001; Kadmiry 
& Driankov, 2004; Sugeno, 1999) and water (surface (Vanick, 1997) or submersible 
(Kanakakis, et al., 2004; Kanakakis, et al., 2001)) robotic vehicles.  

The wide applicability of fuzzy logic in autonomous navigation is mainly based on 
suitable knowledge representation of inherently vague notions achieved through 
fuzzy IF-THEN rules. These rules typically contain linguistic information, which 
describes the problem at hand very simple and fast. Further, in the majority of fuzzy 
logic application in navigation, a mathematical model of the dynamics of the vehicle 
is not needed in the design process of the motion controller. Only the problem-
specific heuristic control knowledge is needed for the inference engine design. From 
a more practical point of view, fuzzy logic is the most appropriate modeling tool for 
representing imprecision and uncertainty of the sensor readings. Another reason that 
explains the popularity of fuzzy logic in autonomous navigation is the low 
computation time of the hardware implementations of fuzzy controllers which favors 
real-time applications. 

This chapter presents implementations of fuzzy logic in the area of autonomous 
vehicles navigation. It discusses successful applications of collision free motion 
control of ground, aerial and underwater unmanned vehicles navigation. The 
common characteristic in all applications regardless of the type of vehicle is the 
navigation architecture used. This generic concept of fuzzy navigation architecture is 
discussed in the next section. Section 3 presents the implementation of the proposed 
generic architecture for ground, aerial and underwater robots. The chapter concludes 
with future research trends for unmanned vehicles. 

 
2. Navigation Architecture 

 
In the literature, the navigation problem is separated in two parts: global 

navigation concerned with generating a path leading to the goal point; and local 
navigation, which follows the global path avoiding collisions with obstacles. The 
solutions presented with the use of fuzzy logic fall more or less in the second 
category. (Saffiotti, 1993) discuss the problem of mixing the two essential navigation 
behaviors, that is, pure reactive and goal-oriented behaviors, by using fuzzy logic. 
Generally speaking, the approaches to fuzzy navigation in dynamic environments 
follow either a classical paradigm or a behavior-based paradigm. Fuzzy navigation 
schemes, which follow the classical paradigm, have one set of control rules that 
includes all situations that may arise. All rules operate at all times to generate the 
control law. Behavior based fuzzy navigation acknowledges that there are different 
types of behaviors which the autonomous vehicle must exhibit in different situations. 



Each behavior is given a set of rules and an inference engine is used to determine 
which behavior (or combination of behaviors) needs to be invoked in the current 
situation. In both paradigms, the “reaction” is given by a set of rules, which describe 
the navigation priorities.  

Fuzzy inference approaches tend to de-emphasize goal-directed navigation and 
focus more upon handling reactive and reflexive cases. The results of the fuzzy 
inference controllers generally do not tend towards optimal paths. However, surprise 
obstacles and rapidly moving obstacles are handled with more certainty compared to 
methodologies in which certain performance criteria should be optimized 
(Tsourveloudis, et al., 2001). 

Regardless of the final navigation goal or the type of vehicles, some kind of sensor 
data management is needed. Sensor readings provide information about the 
environment and the vehicle itself. These readings are almost at all times erratic, 
incomplete or conflicting and should be further processed in order to provide 
meaningful information. This information is essential for the motion commands of 
the vehicle. The overall architecture of the proposed navigation schema is shown in 
Fig. 2. 
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Fig. 2. Architecture of the fuzzy logic navigation scheme 
 
The sensor fusion module is a fuzzy logic controller which takes as input the data 

provided by the various sensors and delivers information for eventual obstacles in 
respect to vehicle’s position and orientation. The interpreted obstacle information 
forms a collision possibility, which is send to the motion control module. The 
collision possibility together with position and/or orientation error are inputs of the 
motion fuzzy controller, which is responsible for the output commands to the driving 
devices. In further details, the first layer of the fuzzy logic inference engine performs 
sensor fusion from sensor readings, providing information about potential collisions 
in four directions, and the second layer guarantees collision avoidance with dynamic 
(moving) obstacles while following the desired trajectory. It has been shown 
(Tsourveloudis, et al., 2001), (Nikolos, et al., 2003b) that a path planning algorithm 
can be easily incorporated in the generic navigation architecture shown in Fig. 2 



The architecture presented in Fig. 2 has been successfully applied to various 
unmanned vehicles as it is described in the following sections. In all these 
applications the basic idea of the layered fuzzy control is utilized in respect to the 
control demands of each robotic vehicle.  

 
3. Physical Implementation 
 
Some of the most difficult applications for robotics lie outdoors in dangerous and 
unknown environments. These include applications such as search and rescue (in land 
and sea), surveillance, humanitarian demining, underwater construction and mapping, 
environment monitoring, meteorology, agriculture and defense. Autonomous 
navigation of unmanned vehicles in unstructured environments is a multidiscipline 
and attractive challenge for researchers from academia and industry. The presentation 
that follows describes state-of-the-art applications of fuzzy logic that follow the 
architecture presented in the previous section. For most of the cases presented 
MATLAB have been used running either in Linux or Windows.  
 
3.1 Ground Vehicles 
 

The proposed navigation scheme was initially implemented on the Nomad 200 
mobile robot platform (Tsourveloudis, et al., 2001), for indoor navigation, and later 
on an ATRV skid steering mobile robot manufactured by iRobot (Doitsidis, et al., 
2002).  

The mobile robot ATRV-mini (shown in Fig. 3) has a ring of 24 sonar sensors that 
are placed around the vehicle and grouped in pairs Ai, i=1,…,12, as shown in Fig. 3, 
each with an actual maximum measurement range of 2m, returning data readings 
every 0.1s. The data used for localization and calculation of the heading were 
produced from an odometer. 

 

 
Fig. 3. DAMON: The ATRV - mini of the Intelligent Systems and Robotics 
Laboratory, Technical University of Crete.  
 

For this robot system, a two-layer Mamdani-type controller has been designed and 
implemented (Doitsidis, et al., 2002). In the first layer, there are four fuzzy logic 
controllers responsible for obstacle detection and collision possibility calculation in 
the four main directions, front, back, left, right. The four controllers receive as inputs 
sonar sensor data and return as output the respective direction collision possibility. 



Data from group sensors A1, A2,…, A5 (5 inputs) and group sensors A7, A8,…, A11 (5 
inputs) serve as inputs to the individual controllers responsible for the calculation of 
the front and back collision possibilities, respectively. Data from group sensors A5, 
A6, A7 (3 inputs) and group sensors A11, A12, A1 (3 inputs) serve as inputs to calculate 
the left and right possibilities, respectively (Fig. 4).  

 

 
Fig. 4. Sonar grouping for the ATRV-mini. 
 
The individual fuzzy controllers utilize the same membership functions to calculate 

the collision possibilities.  
Collision possibilities are calculated using fuzzy rules of the type: 
 

R: IF di is <LD(k)> AND di+1 is <LD(k)> THEN cj is <LC(k)>, 
 

where k is the rule number, di represents sensors group i minimum readings, LD(k) is 
the linguistic variable of the term set D ={near, medium_distance, away}, cj is the 
collision direction and LC(k) the variable with term set C={not_possible, possible, 
high_possibility}.  

The overall output of the first layer is calculated using the max-min composition 
between the fuzzified readings:  

)],(),([minmax)( )( jiRiDdjC cddc k
i

µµµ ∗∗ = ,                           (1) 

where )( iD d∗µ  is the minimum of the fuzzified sonar readings and )(kRµ is the 
mathematical expression of the kth navigation rule. 

The input variables to the second layer fuzzy controller are: a) the four collision 
possibilities with linguistic values {not_possible, possible, high_possibility; b) the 
angle error with linguistic values {Backwards_1, Hard_Left, Left, Left2, Left1 
Ahead, Right1, Right2, Right, Hard_Right, Backwards_2.} The angle_error takes 
values from –180o to 180o and it is the difference between the desired and the actual 
heading of the vehicle.  



The output variables are: a) translational_velocity with linguistic variables 
{back_full, back_normal, back_slow, stop, front_slow, front_normal, front_full} b) 
rotational_velocity with linguistic variables {right_full, right, right1, no_rotation, 
left1, left, left_full}. The translational velocity takes values that range from –1.5m/sec 
to 1.5 m/sec. The rotational velocity takes values ranging from –3rad/sec to 3 rad/sec. 
The number of linguistic values for the angle error, translational and rotational 
velocities is chosen after conducting several experiments to ensure smooth and 
accurate collision free navigation. 

If the value of the translational velocity is positive the vehicle moves forward; if it 
is negative the vehicle moves backwards. A positive rotational velocity results in 
vehicle turn left; a negative value in vehicle turn right. Navigation and collision 
avoidance are performed using rules of the type:  

IF cj is LC(k) AND θ is LΘ(k) THEN tv is LTV(k) AND rv is LTV(k) , 
where k is the rule number, cj  is collision of type j, i.e., the output of the obstacle 
detection module, θ is the angle error, tv is the translational velocity and rv is the 
rotational velocity. LC(k), LΘ(k) , LTV(k), RTV(k)  are the linguistic variables of cj ,θ, tv, 
rv respectively. AND = min in all rules. The generic mathematical expression of the 
kth navigation rule is:  
 

)](),(),(),(min[(),,,( )()()()()( trtvctrtvc kkkkk LTRLTVLjLCjR µµθµµθµ Θ= .         (2) 
 

The overall navigation output is given by max-min composition:  
 

)],,,(),,([minmax),(
,
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j

θµθµµ
θ

∗∗ = ,                         (3) 

where, 
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c tv tr c tv tr .                                   (4) 

 
The two layers of the fuzzy logic controller are presented in Fig. 5. 
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b) 

Fig. 5. a) The sensor fusion module, b) The motion control module. 



 
a) 

 

 
b) 

 
Fig. 6. Navigation in a cluttered environment a): Environment Map, b): Aggregation 
of sonar readings. 
 

A modification of the proposed navigation scheme for outdoors environment was 
implemented in an ATRV-Jr. robot equipped with a different sensor suite, including a 
SICK LMS 200 scanning planar laser and a GPS system (Valavanis, et al., 2005). 
The implementation have been done in MATLAB running on-board the actual 
vehicles connected with the JMatlink class with Java which was responsible for 
handling all the processes which were running on the vehicles. 

It consists of four modules:  the laser range filter, position detection, heading error 
calculation and the actual fuzzy logic robot controller. The control system receives as 
inputs laser, odometer and GPS data, as well as a control reference input (next 
waypoint or goal point). It outputs actuator commands in terms of robot rotational 
and translational velocity.  

The fuzzy logic controller is implemented as a Mamdani-type controller similar to 
previous work (Tsourveloudis, et al., 2001; Doitsidis, et al., 2002). The fuzzy logic 
controller rule base includes the fuzzy rules responsible for vehicle control. The 
inference engine activates and applies relevant rules to control the vehicle. The 
fuzzification module converts controller inputs into information used by the inference 
engine. The defuzzification module converts the output of the inference engine into 
actual outputs for the vehicle drive system. 

The fuzzy controller input from the filtered laser range block consists of a three 
value vector with components related to the distance of the closest object in the left 
sector of the scan, in the center sector and in the right sector, respectively. The 
sectors are presented in Fig. 7. 

This information is used to calculate three collision possibilities left, center, right 
reflecting potential static / dynamic obstacles in the robot field of view, similar to the 
approach followed in (Tsourveloudis, et al., 2001; Doitsidis, et al., 2002) but for 
outdoor environments. The fourth input to the fuzzy logic controller is the robot’s 
heading error calculated from the robot’s current heading and the desired heading.  

Implementation wise, each of the three aggregate range inputs includes three 
trapezoidal membership functions namely, close, medium and far. The input 
linguistic variables are denoted as left distance, right distance and center distance 



corresponding the left area, right area and center area sectors. The heading error 
input uses four trapezoidal membership functions and one triangular membership 
function. They are empirically derived based on extensive tests and experiments. 
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Fig. 7. Laser scanner sectors. 
 

Each distance input variable d i (corresponding to left area, center area, right area) 
is fuzzified and expressed by the fuzzy sets C i , MD, A i  referring to close, medium, 
and far. The range of the membership functions for each d i is between 0-8 meters. 
The input variable heading error, he, is fuzzified and expressed by the fuzzy sets FL, 
L, AH, R, FR, referring to far left, left, ahead, right, and far right, respectively. The 
range of the membership functions for the heading error, is between -180 and 180 
degrees. 

The fuzzy logic controller has two output variables, translational velocity (tr) 
implemented with two trapezoidal and one triangular membership functions, and 
rotational velocity (rv) implemented with four trapezoidal membership functions and 
one triangular membership function.  

The output variable tr is expressed by the fuzzy sets ST, SL, F referring to stop, 
slow, and fast, while the output variable rv is expressed by the fuzzy sets HRR, RR, 
AHR, LR, HLR referring to hard right, right, ahead, left, hard left. 

The output commands are normalized in a scale from 0 to 1 for the translational 
velocity, where 0 corresponds to complete stop and 1 to maximum speed. Rotational 
velocity output commands are normalized from -1 to 1, where -1 corresponds to a 
right turn with maximum angular velocity and 1 to a left turn with maximum angular 
velocity. Each fuzzy rule j is expressed as: 
IF d 1  is D 1j  AND d 2 is D 2j AND d 3  is D 3j AND he is HE j  THEN tr is TR j  AND rv 
is RV j ;   
for j=1,…, number of rules. D ji , is the fuzzy set for d i  in the jth rule which takes the 
linguistic value of C i , MD, A. HE j  is the fuzzy set for the he which takes the 
linguistic values FL, L, AH, R, FR. TR j and RV j  are the fuzzy sets for tr and rv 
respectively.  



The generic mathematical expression of the jth navigation rule is given by:  
 

)](),(),(),(min[),,,( )()()()( rvtrhedrtrhed jjjjij RVTRHEiDiR
µµµµµ = .            (5) 

 
The overall navigation output is given by the max-min composition and in 

particular:  
)],,,(),,([minmax),(

,
rvtrhedhedvrtr iRiANDhedN

i
µµµ ∗∗ = ,                      (6) 

where U
J

j
iRiR rvtrhedrvtrhed i

1
),,,(),,,( )(

=
= µµ . The navigation action dictates change 

in robot speed and/or steering correction and it results from the deffuzification 
formula, which calculates the center of the area covered by the membership function 
computed from (6). 

In order to validate the proposed scheme experiments performed in an outdoor 
environment which had grass, trees and some vegetation. Different set of experiments 
included waypoint navigation based on static predefined points while avoiding static 
and dynamic obstacles, raster scan of a certain area with multiple robots navigating 
and in the same time avoiding each other. Sample pictures of the ATRV-Jr. moving 
around in an area with trees are presented in Fig. 8. 

Fig. 9 shows one full path traveled through an initial point to the final point, in a 
tree covered area while periodic laser scans are shown over the course of the robot’s 
path.  

 

 

 
Fig. 8. Unmanned Ground Vehicle navigating in an area with trees. 
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Fig. 9. Robot path in an outdoor environment. 

 
3.2 Aerial Vehicles 
 

Implementations of the proposed navigation scheme for fixed wing unmanned 
aircrafts are presented in (Doitsidis, et al., 2004b) and in a similar approach in 
(Nikolos, et al., 2003a). 

In (Doitsidis, et al., 2004b) a two module fuzzy logic based autonomous navigation 
system which is capable i) to fly through specified waypoints in a 3-D environment 
repeatedly, ii) to perform trajectory tracking, and, iii) to duplicate / follow another 
aerial vehicle. Two fuzzy logic control modules are responsible for altitude control 
and latitude-longitude control; when combined, they may adequately navigate the 
aerial vehicle. All input and output linguistic variables have a finite number of 
linguistic values with membership functions empirically defined.  

The altitude fuzzy logic controller has three inputs, that is a) altitude error, b) 
change of altitude error, and, c) airspeed. The altitude error is the difference between 
the desired altitude and the current altitude of the airplane. The change of altitude 
error indicates whether the aerial vehicle is approaching the desired altitude or if it is 
going away from it. The airspeed is the current speed of the vehicle. Outputs are the 
elevators command and the throttle command, responsible for the decent and accent 
of the aerial vehicle. The latitude-longitude controller has as inputs the heading error 
and the change of heading error. The heading error is the difference between the 
desired and the actual heading of the airplane. The output is the roll angle of the 
airplane. 

A simulation environment has been implemented in MATLAB. Vehicle’s motion 
dynamics were adopted from the Aerosim Block Set that can be integrated in 
SIMULINK. The simulation test bed consists of the following subsystems: 1) Aircraft 



model, 2) Altitude Fuzzy Logic Controller, 3) Latitude-Longitude Fuzzy Logic 
Controller, and 4) Error Calculating block. 

Experimental results are presented in Fig. 10. In Fig. 10a the vehicle is passing 
through from a certain point.  

a) b) 
Fig. 10. Trajectories followed by the vehicle.  

 
Further, the NEARCHOS UAV, presented in Fig. 12, has been used as a test bed. 

The flight behavior of this UAV has been modeled in terms of simple analytic 
relationships, which proved very helpful in representing its actual flight in the 
horizontal plane. A fuzzy controller for the autonomous navigation on the horizontal 
plane, has been developed in (Nikolos, et al., 2003a). The controller inputs are the 
heading error of the aircraft and its current roll angle, while the output is the change 
command of the roll angle. The basic purpose of the navigation system was, to make 
the vehicle able to follow a predefined trajectory.  

Even though the current roll angle takes values ranging from –900 to 900, the flight 
control system of the tested vehicle functions safely in a range from 700 to 700. The 
linguistic variables that represent the current roll angle are: Right_Big (rb), 
Right_Medium (rm), Right_Small (rs), Zero, Left_Big (lb), Left_Medium (lm), Left_ 
Small (ls). The second input to the fuzzy controller is the heading error, which is 
defined as the difference between the desirable and the factual direction of the 
aircraft. The factual direction is the heading of the aircraft, which is provided from 
the GPS. The desirable direction is the heading of a vector, with a starting point the 
current aircraft’s position and ending point the desirable position. The linguistic 
variables that represent the heading error are: Negative_Big (nb), Negative_Medium 
(nm), Negative_Small (ns), Zero, Positive_Big (pb), Positive_Medium (pm), 
Positive_Small (ps). The membership functions of the input variables are presented in 
Fig. 11. 

The desired and the actual heading direction take values ranging from 00 to 3600, 
whereas the heading error takes values ranging from -1800 to 1800. However, in this 
implementation the heading error takes values in the region [-1000, 1000]. Negative 
(positive) values of heading error correspond to desirable right (left) roll. The 
linguistic variables that represent the heading error are: Negative_Big (nb), 

start 

target 
target 

start 



Negative_Medium (nm), Negative_Small (ns), Zero, Positive_Big (pb), 
Positive_Medium (pm), Positive_Small (ps). 

 
a) 

 
b) 

Fig. 11. Membership functions plot of input variables: a) Current Roll, b) Heading 
Error. 

 

 
 

Fig. 12. The UAV NEARCHOS (Property of EADS – 3 SIGMA S.A) 
 

 
a)  

b) 
Fig. 13. Trajectories followed by the UAV. Dashed lines represent the observed path 
while solid lines are the desired trajectories. 



Experimental results about how the fuzzy logic controller performed in terms of 
trajectory following are presented in Fig. 13, where the continuous and discontinuous 
lines represent the desired and the trajectory that the fuzzy logic controller forced the 
vehicle to follow respectively. 

 
3.3 Underwater Vehicles 
 

Most of the difficulties in navigation of underwater vehicles (see Fig. 14) are due 
to the inherently uncertain nature of these environments. Fuzzy logic offers features 
that significantly help in addressing such problems (Kato, 1995; Tsourveloudis, et al., 
1998; Kanakakis, et al., 2004). Here, we present an overview of the fuzzy logic 
implementations for the navigation of Autonomous Underwater Vehicles (AUVs) 
introduced in (Tsourveloudis, et al., 1998; Kanakakis, et al., 2001; Kanakakis, et al., 
2004).  

Some of the already known generic problems in autonomous navigation remain in 
the area of AUVs. These problems are, the sensor fusion problem: how to fuse 
information from different sensor modalities, or different readings from the same 
sensor; the coherence problem: how to register representations used at different levels 
of abstraction, and the coordination problem: How to coordinate the simultaneous 
activity of several, possibly competing behaviors such as collision avoidance and 
goal reaching. Additional problems in the 3-D autonomous underwater navigation 
are: 1) Unknown environments: Poor map and perceptual information, currents with 
unpredictable behaviour, and 2) Very limited communication options with the 
vehicle. 

 
Fig 14. The underwater vehicle Phantom S2. 
 

Fuzzy logic navigation solutions have shown a good degree of robustness, which is 
crucial in the area of underwater robotics, where: 1) sonar data is unreliable, 2) 
mathematical models about the environment and the vehicle are usually not available, 
and 3) the only available navigation expertise is due to vehicle operators. 

The aim of underwater navigation is to guide the vehicle at a predefined point, by 
controlling various parameters such as pitch, yaw etc. The desired values of these 
parameters are the control objectives at any time instant. The fuzzy rules, which 
contain the navigation parameters, aim towards two goals: ideal trajectory tracking 
and collision avoidance. The generic expression of a fuzzy rule could be: 



 IF trajectory-condition AND obstacle-condition THEN vehicle-action. 
The navigation architecture proposed for the underwater vehicles enables two 

layers of fuzzy controllers. These controllers can provide accurate and collision free 
navigation of an AUV in ocean environments, considering position accuracy with the 
presence of ocean currents and providing vertical stability to the vehicle. Similar to 
the generic architecture described in Section 2, the autonomous underwater scheme 
has the following modules: 

• The sensor fusion/collision avoidance module, where the readings of the 
sensors of the vehicle are provided to estimate the position of the vehicle and 
the collision possibility in all surrounding directions. The sensor fusion module 
is responsible for position monitoring and obstacle detection. As AUVs operate 
in unknown or poorly mapped ocean environments, static or moving obstacles 
find themselves in the desired path of the vehicle. In these cases the vehicle 
should be able to use it’s on board sensors to monitor its position and to detect 
moving or static obstacles. This implies the use of a number of different kinds 
of sensors, like vision cameras, laser sensors, magnetic compasses, gyroscopic 
mechanisms and sonar sensors. For most cases where vision is poor, sonar 
sensors are used to estimate an underwater environment. 

• The motion control module, which performs low-level control of the 
vehicle’s propellers, thrusters and fins in order to reach the determined goal 
point having the target surge velocity. The inputs are the goal point and the 
actual position and orientation, in earth-fixed coordinates, the target surge 
velocity and the vector of the actual vehicle velocities in body-fixed 
coordinates, and the sea current velocity. 

Since the design of fuzzy controllers does mot require any strict modeling of the 
vehicle’s behavior the above design is adopted for its simplicity, considering that it 
can be applied in all types of AUVs. 
 
3.3.1 The Sensor Fusion/Collision Avoidance Module 
 

The sensor fusion module outputs the collision possibility in front, right, left and 
back directions. The output linguistic variables are: front_collision, right_collision, 
left_collision, back_collision, taking the linguistic values not possible, possible, high. 
The collision possibilities in the four cardinal directions are computed from fuzzy 
rules of the type:  

IF di is <LD(k)> THEN cj is <LC(k)>, 
 
and for example: IF sonar 1 distance is <close> THEN front_collision is <high>, 
where, k is the rule number, di represents the readings of the sensor i, LD(k) is the 
linguistic variable of the term set D ={close, near, far}, cj is the collision of type j (j 
∈ {not possible , possible, high}). 

A second fuzzy controller in the same module is responsible for the collision 
avoidance. It takes as inputs: a) collision possibilities with linguistic values not 
possible and high, b) head_error with linguistic values: left_big, left, left_small, zero, 



right_small, right, and right_big, and c) pitch_error with linguistic values down_big, 
down, down _small, zero,  up_small, up, and up_big.  The output variables are: a) 
head_change with linguistic variations, such as, left_fast, left, left_slow, zero, 
right_slow, right, and right_fast, b) pitch_change with linguistic values down_fast, 
down, down _slow, zero, up_slow, up and, up_fast, c) surge_speed with linguistic 
values slow, normal, and high. The collision avoidance controller consists of rules of 
the following form:  

IF cj is LC(k) AND ψ is LΨ(k) AND θ is LΘ(k), THEN dψ is LDΨ(k) AND dθ is 
LDΘ(k) AND u is LDU(k), 
where, k is the rule number, cj is the collision of type j, ψ is the heading error, θ is the 
pitch error, u is the vehicle’s surge speed, and LC, LΨ, LΘ LDΨ, LDΘ, LDU are the 
linguistic variables of cj, ψ, θ, dψ, dθ, u respectively.  
 
3.3.2 The Motion Control Module 
 
The overall motion controller consists of the following subsystems: 

• The speed control subsystem is responsible for the vehicle’s speed by controlling 
its propellers revolution rate. 

• The heading control subsystem controls the steering in the horizontal plane by 
controlling vehicle’s head angle.  

• The depth control subsystem controls the motion of the AUV in the vertical plane 
by regulating vehicle’s pitch angle and depth. 

•  The roll control subsystem controls the roll parameter of the motion of the AUV. 
• The ocean current subsystem adjusts the position of vehicle in case of undersea 

currents. Under the presence of a sea current, the vehicle has a drift and a 
deviation from the originally planned course. Although this deviation can be 
considered in both the speed and steering controllers, this controller adds 
maneuverability by modifying the steering controls. Its aim is to overcome the 
lateral drag by modifying the desired head and pitch angle.  

The overall architecture of the fuzzy logic based navigation is shown in Fig. 15.  
A vehicle control action (a fin angle, a thruster voltage or a desired propeller 

revolution rate) may be commanded from more than one of the above subsystems; 
thus, for each commanded action and during each simulation step the outputs from all 
subsystems form a control vector that controls the actual vehicle. The values of this 
control vector are bounded within the operational limits of vehicle servomotors to 
reflect reality. It should be noted that the effect of ocean currents of different velocity 
is taken into consideration in all phases of design and testing. 
 
3.3.3 Simulation Results 
 

The proposed architecture is applied to Phoenix AUV of the Naval Postgraduate 
School at Monterey, California, USA. Its dimensions and hydrodynamic model are 
given with clarity in the (Brutzman, 1994). The NPS-Phoenix AUV is neutrally 
buoyant and has a hull length of 7.3 ft. It has four paired plane surfaces (eight fins 



total) and four paired thrusters built in cross-body tunnels. It has two screw bi-
directional propellers. Its design depth is 20 ft (6.1 m) and the hull is made of press 
and welded aluminum. The vehicle endurance of 90-120 min is supported by a pair of 
lead-acid gel batteries at speeds up to 2 ft/sec (0.61 m/sec).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. The motion control module 
 
The behavior of the vehicle was examined under various situations including step 
response, ocean current, and smooth curve path. The overall performance of the 
controller was found to be encouraging for further research and refinement. Fig. 16 
show the AUV following a rectangle saw-tooth curve in the horizontal plane and 
gradually descents and ascents in the vertical plane. Ocean current is present. The 
vehicle is simulated under ocean current with Y (earth-fixed) velocity of 0.3, 0.6, 0.8 
1.0, 1.2 ft/sec. Fig. 17a, b) show the trajectories presented in Fig. 16 in vertical and 
horizontal planes, respectively.  
 
4. Conclusions 
 

The technology of unmanned vehicles, in all its aspects, is an exciting one, 
especially since it holds the promise of saving human lives by letting machines do 
dull, dirty or dangerous missions into high-threat environments or just unknown 
environments 

This chapter shows how core research on fuzzy logic affects the advances in 
unmanned vehicles navigation technology and the way it can be applied to a variety 
of robotic vehicles, operating on ground, air or underwater. Furthermore, three key 
attributes for a vehicle to be considered as capable for performing autonomous 
navigation have been identified. Perception which is the ability of the vehicle to 
acquire knowledge about the environment and itself; intelligence which is the ability 
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of a vehicle to operate for a considerable amount of time without human intervention, 
and action which is the ability of the vehicle to travel from point A to point B. How 
capable is a vehicle to perform these different functions is the metric to evaluate the 
degree of its autonomy.  

 

 
Fig. 16. Simulated AUV trajectory for various ocean current velocities. 
 

 
                                        a)                                                           b) 

Fig. 17. AUV paths for various current velocities: a) in XY plane, b) in XZ plane. 
 

Based on these attributes, fuzzy logic has been identified as a useful tool for 
developing controllers for vehicles so that they will be able to perform autonomous 
navigation. A two layer fuzzy logic controller architecture has been described. The 
first layer is the sensor fusion module in which the vehicle evaluates readings from 
various sensors and interacts with the environment.  

In the second layer, which is the motion control module, the information derived 
from the previous layer is combined with other parameters i.e. heading, speed, 



altitude, position etc. This layer outputs the actual commands that will move the 
vehicle towards its mission.  

This architecture has been proven effective in almost all types of robotic vehicles 
(see for example: Doitsidis, et al., 2002; Doitsidis, et al., 2004; Kanakakis, et al., 
2001; Kanakakis, et al., 2004; Nikolos, et al., 2003a; Tsourveloudis, et al., 1998; 
Tsourveloudis, et al., 2001; Valavanis, et al., 2005).  

In the next decade advances in technologies such as, Computers and 
Communications, Electronics, Computer-integrated manufacturing and Materials 
Design, will drastically support unmanned robotics to mature while dropping their 
costs. This will lead to a dramatic growth of unmanned robotic systems, a fact that 
will further affect the consumer, education, research, business and military markets. 
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