
P r d b g s  of the 2004 IEEE 
lnmrnetional Conference on Robotiu h Automallon 

New Orleans. LA npril2004 

A UAV Vision System for Airborne Surveillance 

M. Kontitsis, K m o n  P. Valavanis 
Department of Computer Science and Engineering 

University of South Florida 
Tampa, Florida, USA 

mkontits@mail.usf.edu, kvalavan@csee.usf.edu 

Abshrrel-The paper presents a machine vision system for aerial 
surveillance that can interpret and process data acquired by a 
UAV on-board infrared camera. System components include 
noise reduction, feature extraction, classification and decision- 
making. Decision-making is performed in terms of an alarm 
signal. The system has been configured for automatic fire- 
detection applications where the alarm b set off in case of f i e  
identification. Real time tests bave been performed and the 
system has been tested producing sets of real images. Finally, a 
genetic algorithm was used to automatically define some of the 
system's parameters. 
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I. INTRODUCTION 
Airborne surveillance has been proven to be important and 

applicable to a wide range of applications, such as search and 
rescue missions, border security, resource exploration, wildfire 
and oil spill detection. Until recently, common practice has 
been to use manned aircraft equipped with special sensors and 
to assign the actual recognition task (surveillance) to the crew, 
or record image data and analyze them off-line on the ground 
[l]. In exceptional cases where Unmanned Aerial Vehicles 
(UAVs) are used, they are treated as sensor carrying platforms 
transmitting data to a ground control station (GCS) for 
analysis, since the involved UAVs lacked the ability of local 
on-board intelligence for data interpretation [2]. 

The objective of this research is the design of a (machine) 
vision system that enables an UAV to acquke and interpret 
data in real time, followed by decision-making in terms of 
signaling an alarm, while flying over a specified (targeted) 
area. Although the discussed system is general enough, the 
specific application under consideration is the automated fire 
detection. The UAV may be fully autonomous, semi- 
autonomous or teleoperated according to application 01 mission 
requirements. However, this does not affect the design of the 
system presented in this paper. 

The paper is organized as follows: Section I1 provides a 
description of the proposed system. It starts with an overview 
of each module and concludes with remarks related to the 
computational complexity of the used algorithms. In Section 
111, a case study is presented. The system is configured for 
forest fire detection; results include real images. Section IV 
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refers to the derivation of a genetic algorithm (GA) that helps 
automating the design process of the system. Section V 
concludes the paper. 

11. SYSTEM DESCRIFTION 

A .  System Overview 
The proposed machine vision system consists of the 

following components: Noise reduction component, feature 
extraction component, feature vector classification component, 
and alarm raising component. 

It is considered that images are acquired using an Inhred 
(IR) or a Near Infrared NIR camera (8-bit grayscale bitmap). 
Images are subjected to preliminary image processing, namely 
gauss filtering for noise reduction purposes. Then, each image 
is segmented to various regions and the size and the meun 
infensiy of each of these regions are selected as features. This 
procedure produces a series of feature vectors for each image. 
The vectors are fed to a fuzzy classifier, which assigns to each 
region a number indicating the possibility of the corresponding 
region being the objective. All regions classified as having a 
high possibility of being the object are kept in a registry. If a 
certain region is persistently returning a high possibility, the 
alarm is set off. 

The block diagmm of the system is shown in Figure I .  It is 
impomnt to notice that due to the nature of the image sensors 
(IR/NIR camera) the image is a representation of the energy 
emitted by the various objects in the electromagnetic spectrum 
from lpm to 1 4 p .  These objects, especially those with a 
strong signature in the 3 p  to 14pm band [3], are thermal 
sources that are likely to be the application objectives. 

, 

Fig.1: The block diagram ofthe mchine vision module 
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c) Grow the regions by appending to each seed point 
those neighboring pixels that have similar properties. 

The threshold k e d  is given a high gmyscale value (above 
160 in a 0 to 255 scale) in accordance with the assumption that 
targets appear brighter on the image. Recall that the image is an 
8-bit grayscale so the intensity of the pixels take 2' distinct 
values ranging eom 0 (black) to 255 (white). The local 
maxima of the image that have an intensity value higher than 
Tseed are selected as seed points. The conditions for appending 
a pixel p with intensity value g into a region S is: 

1. Ig-g(seedpoint) < Dseed, 

2. p is 8-connected with a pixel belonging to the region S, 

where g(seedp0int) is the intensity value of the corresponding 
seed point and Dseed is a constant. This is repeated until aU 
pixels are assigned to some region. If the size of a region falls 
below a threshold Tsize the region is discarded as 
corresponding to noise rather tban to a possible object. When 
this procedure concludes, a series of feature vectors is created 
containing information for every region. 

D. Feature Vector Classification Component 
The basis for the development of the feature vector 

classifier is fuzzy logic. The choice of a fuzzy logic classifier is 
preferred for its-simplicity as well as for the direct way in 
which it incorporates the experience into the structure of the 
classifier. It allows for easy changes on the system's behavior 
by fme-tuning the rule base or the membership functions that 
fuzzify the input variables; thus, making the system capable of 
adjusting to a variety of targets without much difficulty. 

The process of classifying feature vectors is shown in 
Figure 2. At first, the elements of each vector are assigned a 
membership function. The meun intensity feature is fuzified to 
Low, Mid and High. Similarly, the size feature is divided to 
three linguistic -variations Small, Medium and Large, 
respectively. Every one of them is described by a ,trapezoidal 
function such as: 

- 
1 5 8 5 1  
5 20 3 4 ~  20 5 

8 34 56 34 X 
5 20 34 20 5 

(2) 

L 1 5 8 5 1  

x - a  , a < x < b  

I ,  b < x < c  (4) 

, c < x S d  

LO, x i a ,  x 2 d  
o ,b, c, d are constants. Examples of membership functions 
used are shown in Figures 3 and 4. After completing the 
fuzzification process. the results are evaluated through a rule 
based inference engine. Rules determine the output of the 
system and give an indication regarding the presence or the 
absence of a target in the area. Rules are stated in the well 
known IF THEN form, as for example: 

IF Mean Intensity is High AND Sue is Medium 
. THEN Target IDpossibility is High. 
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F i g 2  Block diagram of the feahm vector classification subsystem 

The output variable is the target identification possibility 
and its membership functions are depicted in Figure 5. After 
examining the rules and applying the aggregation method 
(max), the defuzzification process yields a number in [O,l] that 
classifies each region into one out of three different classes. If 
the output possibility is lower than a threshold Tlout 4.5 then 
the region, whose feature vector produced that result, has LOW 
possibility of being the designated target. A MEDIUM 
possibility classification occurs when the output is between 
Tlout 4 . 5  and TZout 4.7, while HIGH possibility is assigned 
to those regions that produce an output higher than TZouf =0.7. 

E. Alarm raising component 
The alarm-raising module of the machine vision system is 

the one responsible for the fmal decision regarding the 
presence or the absence of the object in an image. If this 
decision is left solely to the fuzzy classifier, some random 
events, such as reflections or noise, can trigger an alarm by 
inducing into the image bright regions that do not actually 
correspond to a thermal source. Exploiting the observation that 
such events are small in duration, this kind of false alarms can 
be avoided if a sort of duration threshold is 
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Fig.4: Membership functions ofthe Size of Region feature. 

Then the alarm is raised and it is turned off only if the 
object is no longer detected. In this way the classifier's initial 
evaluation of a region is confmed or rejected by its 
subsequent ones. . .  

Target ID Possibility 
1 2  . , , , , , , , , 

Fig.5: The membership functions for the output variable target identification 
possibility 
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Fig.3: The Mean htensity membership functions 

The mechanism that implements this behavior uses a 
registry to keep track of all the regions that are given a high 
possibility of being the target and therefore are likely to raise 
the alarm. In this registry the position of every such region is 
stored as well as a variable indicating the persisfence with 
which the classifier assigns a high ID possibility to that region. 
This variable is increased by a constant, e.g. 2, every time the 
region is given a high ID possibility and is decreased by 1 in 
any other case. If the value of persistence exceeds a certain 
threshold Ton the alarm is set. On the contrary, should it fall 
below Toflthe alarm is turned off. 

For the system to be able to accumulate evaluations for a 
certain reeion it must also be able to identifv and track it over - .  
subsequent frames. Based upon the assumption that a region 
shifts only by a small amount of pixels over two successive 
frames, the algorithm searches for it in the same area of the 

A region must be classified as of high possibility Over 
several frames before it could be considered as valid 
indication for the existence of the target. 

79 



next iiame. For a region to be tracked it must not shift more 
than a distance Tvor born its position in the previous kame. 

The various thresholds used throughout the system can be 
viewed as the parameters that defme its behavior and 
performance. For convenience they are summarized in Table 1. 

F. Complexity 
Dealing with two-dimensional images may be 

computationally intensive. However, in this case, the 
algorithms used, namely the noise reduction and region 
growing ones, did not exceed the order of O(n9 in complexity, 
with 17 being the dimension of a square image (nxn). Also, 
under the current implementation, the fuzzy classifier is found 
to have its own complexity depending mainly on the product of 
the number of features (n) and the number of rules in its o m 40 M m tm 120 ia IW im 2w 
inference engine (m). So, in general, it is of order O(nxm). 

Although one can a w e  that o(n9 algorithms do not scale 
nicely, the various tests the system has been subjected to, 
showed that, for images of resolution up to 320x240 pixels, 
real time or near real time, performance can be achieved on 
average commodity hardware. This resolution is found on the 
most mid valued IR cameras available today and it is sufficient 
for most appliCations like the one described in the next Section. 

Region Size 

number of pixels in region 

Fig.6 Membership fwtiom ofthe Sire of Region r e a m  for the forest f i e  
detectioncase. 
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TABLE 1. PARAMETERS OF THE SYSTEM 

parnmetei I Meaninp: 
Feature -nion componcnl 

Treed Intensity threshold for the selection of 
seed polllts 

a ,brcndU forij=1,2,3 

. TIout, TZout 

Alarm ,ding 
Toll, 

c i te ion sarisfied by the pix& 
belonging'to the same region 

Parameters that defme the form of the 
naperoidal membership fundions of 
the fwzy classifier 
Thresholds .separating the region 
elasren in t e r n  of target ID 
passibility 

Threshold for the rxrsbtence variable 

C!mc~c~lioncomponeN . ' 

componcnl 

I I conwcutive frames I 

. .  . .  
111. CASE STUDY- 

. In order to evaluate the system in a real scenario, a test case 
was set up. A small fue y a s  set in.a semi-rural area, having 
taken of ""e all the necessary precautions. The system 
described in the previous section was configured for the 
purposes of forest fm detection. In particular, the membership 
functions of the meun infensify and size features were altered to 
better describe the inquired object. The resulting functions are 

 shown in Fig.6 and 7. All the other parameters of.the fuzzy 
classifier .were retained. 
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Fig.7 The Mea0 Intensity membership functio& for th! forest fue detection 
case 

For visualization purposes the.regions.that are classified as of 
'low possibility are painted green, while orange and red were 
chosen to indicate regions of medium and high possibility 
respectively. Also, when a certain region causes the alarm to be 
set, it is pinpointed by superimposing a crosshair over it. 

The system's performance was evaluated both in the 
presence and absence of the fue. Results are presented in Fig.8 
and Fig. 9. For more results please visit 

N. AuTOMAnC PARAMETER SELECTION 
In this section the attempt to automate the design process of 

the system is presented. The aim is to derive a system that 
functions similarly to the one designed for forest fue detection 
not by selecting all of its parameters manually. This implies 
that some of them will be defmed using some automatic 
method. The parameters chosen to undergo automatic selection 
are those that defme the form of the membership functions 
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used to describe the linguistic variations of the mean intensity 
feature (see equation 4). Due to the plethora of possible 
solutions and the inadequate knowledge of the solution space, a 
genetic algorithm was employed. 

A. 

any other GA, includes the following [7]: 

Basic Elements of the Genetic Algorithm 
The genetic algorithm (GA) implemented in this paper, like 

Chromosomes consisted of the ah b, cr d, for i=1,2,3 
parameters were used (see equation 4). Recall that 
there are three membership functions for the mean 
intensity feature. Each one of the chromosomes 
represents a possible solution to problem of selecting 
the parameters. 

Fig 8: 

The fitness function, through which all chromosomes 
are evaluated, has three branches. If an image contains 
a !ire and the system raises the alarm, then 
$tness(x) = ke4.05di* where k is a constant and 
disf is the Euclidian distance of the region, which the 
system indicates as a thermal soume from its actual 
position. If there is no fue present and the alarm isn't 
raised, thenfimess=l. In any other casefitnesA. 

A selection operator that selects individuals for mating. 
Every individual is chosen as many times as the ratio 
of its fibess to the total fitness of the population. 

An operator responsible for the crossover of two 
mating chromosomes. It randomly chooses a locus and 

with a probability ~ ~ 4 . 7  exchanges the gene 
subsequences of the two chromosomes. 

Finally a mutation operator is used to add to every 
gene of the offspring a random number in [-S, 51. 
Mutation probability wasp.4.001. 

Fig 9 

The GA was used to evolve a population of 100 
chromosomes for 50 generations. After several tuns the fittest 
individual yielded the membership functions depicted in Fig. 
10. 

It can be observed that the Low and Mid membership 
functions almost share the same support set. This is due to the 
GA's tendency to favor those individuals that can identify a 
region corresponding to a fue, without paying any attention to 
the characterization of the rest of the regions. 

B. Results 
A training set of about 200 images was used during the mns 

of the GA. Among them there were some that had a fire present 
as well as some without one. The system designed by the fittest 
individual managed to respond correctly to about 90% of the 
cases. Afterwards the system was prompted to evaluate a 
different sequence of images with more or less the same 
success, although it didn't entirely avoid some false alarms. 
Fig. 11 and 12 show exactly that. In comparison with the 
system that had manually selected parameters, it shows ahout 
the Same performance being worse only in terms of false alarm 
occurrence. 
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Fig.10: The Mean Intensity membership functions for the forest frre detection 
c a ~ e  as evolved by the GA. 
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V. CONCLUDING REMARKS 
The aim of this paper was to present a methodology for the 

design of a machine vision system for'aerial surveillance by 
Unmanned Aerial Vehicles (UAVs): The .implemented 
algorithms, exhibited a satisfactory behasor having a correct 
identification rate of about 90%. Errors did occur, especially in 

. the case of the system evolved by the GA, but they cannot 
affect the overall performance. During the tests, the system 
managed to significantly reduce the misclassifications due to 

disturbances such as random reflections, without sacrificing its 
detection sensitivity, as it would be expected. 

Despite all these, the system has no way to adapt to new 
data. Although the automatic selection of some parameters 
presented in Section IV, may qualify as some sort of 
adaptation, the fact that it is carried out offline deprives the 
system the ability to constantly modify its structure. Onlie 
adaptation as well as the automatic selection of a wider range 
of parameters should be a vital part of any fuhlre developments 
that could be considered. 

Fig. 12: Respond of the system designed with the use of the GA in the absence 
of fire showing some false alarms. 
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