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Abstract—The paper presents a machine vision system for aerial
surveillance that can interpret and process data acquired by a
UAV on-board infrared camera. System components include
noise reduction, feature extraction, classification and decision-
making. Decision-making is performed in terms of an alarm
signal. The system has been configured for automatic fire-
detection applications where the alarm is set off in case of fire
identification. Real time tests have been performed and the
system has been tested producing sets of real images. Finally, a
genetic algorithm was used to automatically define some of the
system’s parameters.
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1. INTRODUCTION

Airborne surveillance has been proven to be important and
applicable to a wide range of applications, such as search and
rescue missions, border security, resource exploration, wildfire
and oil spill detection. Until recently, common practice has
been to use manned aircraft equipped with special sensors and
to assign the actual recognition task (surveillance) to the crew,
or record image data and analyze them off-line on the ground
[1]. In exceptional cases where Unmanned Aerial Vehicles
(UAVs) are used, they are treated as sensor canying platforms
transmitting data to a ground control station (GCS) for
analysis, since the involved UAVs lacked the ability of local
on-board intelligence for data interpretation [2].

The objective of this research is the design of a {machine)
vision system that enables an UAV to acquire and interpret
data in real time, followed by decision-making in terms of
signaling an alarm, while flying over a specified (targeted)
area. Although the discussed system is general enough, the
specific application under consideration is the automated fire
detection. The UAV may be fully autonomous, semi-
autonomous or teleoperated according to application or mission
requirements. However, this does not affect the design of the
system presented in this paper.

The paper is organized as follows: Section II provides a
description of the proposed system. It starts with an overview
of each module and concludes with remarks related to the
computational complexity of the used algorithms. In Section
IMl, a case study is presented. The system is configured for
forest fire detection; results include real images. Section IV
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refers to the derivation of a genetic algorithm (GA) that Helps
automating the design process of the system. Section V
concludes the paper.

II.  SYSTEM DESCRIPTION

A, System Overview .

The proposed machine vision system consists of the
following components: Noise reduction component, feature
extraction component, feature vector classification component,
and alarm raising component.

Tt is considered that images are acquired using an Infrared
{IR) or a Near Infrared NIR camera (8-bit grayscale bitmap).
Images are subjected to preliminary image processing, namely
gauss filtering for noise reduction purposes. Then, each image
is segmented to various regions and the size and the mean
intensity of each of these regions are selected as features. This
procedure produces a series of feature vectors for each image.
The vectors are fed to a fuzzy classifier, which assigns to each
region a number indicating the possibility of the corresponding
region being the objective. All regions classified as having a
high possibility of being the object are kept in a registry. If a
certain region is persistently retuming a high possibility, the
alarm is set off.

The block diagram of the system is shown in Figure f. It is
important to notice that due to the nature of the image sensors
(IR/NIR camera) the image is a representation of the energy
emitted by the various objects in the electromagnetic spectrum
from 1pm to 14pm. These objects, especially those with a
strong signature in the 3um to l4pm band [3], are thermal
sources that are likely to be the application objectives.

IR/NIR image

Feature extraction
(Size. mean intensity)

Noise reduction
image processintg

b 4

Alarm ; Feature vector

Fig.1: The block diagram of the machine vision module
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- B.  Noise Reduction Component

- -The image acquired by the IR/NIR camera is, like any
" other signal genecrated by any sensor, subject to noise. To
mitigate this undesirable effect, a spatial Gaussian filter is
“used, defined as:
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~where o is the deviation and ¢ a nommalizing constant.
Choosmg o=1 and a size of (5x5) matrix, the following mask
___;;;_15 formed [4]:
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A larger filter, say 7x7, could offer a better representation
. of the gaussian function at the expense of some extra

" ‘computational cost. The use of a smaller one could of course

.reduce the amount of computations needed but it would

sacrifice the representation accuracy of the gaussian bell. The-

.5%5 is a good compromise between the need: for adequately
representing the function in discussion and the necessity of a
>low computatmnal COst. .

The selection of this kind of ﬁlter has been favored by its
- ability to remove noise without significant information loss.

-Feature Extraction Component

A very important task in the surveillance process is to
.define-the object the system should look for and to select
features describing it in an almost unique manner. Based on the
assumiption that - image regions corresponding” to the
application’s target have different intensity values compared to
their swrroundings, the region’s mean infensity is selected as a
feature. For example, in an application regarding forest fire

. detection, targets that are trees on fire, are shown on the image -

" as regions with higher mean intensity [3], which is defined-as;
' > grayvalue _of _ ptxel
¥ pixel € region

- ‘Mean intensity =
-number of pixels in the region
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Another feature that may be used to discriminate among

regions is the size. This helps-in the definition of the objective -

since a specific size range can be favored.
Having- chosen the features,"all that remains is to extract
them from the-image. This is done by segmenting the image
. using a region growing-by pixel aggregation algorithm [4][5].

** Such an algorithm consists of the following steps:

a) Select a threshold, Tseed for the intensity of the
pixels that will be chosen as seed points. -
b)

Select the seed points
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Grow the regions by appending to each seed peint
those neighboring pixels that have similar properties.

<)

The threshold Tseed is given a high grayscale value (above
160 in a 0 to 255 scale) in accordance with the assumption that
targets appear brighter on the image. Recall that the i image is an

8-bit gmyscale so the intensity of the pixels take 2® distinct
values ranging from O (black) to 255 (white). The local
maxima of the image that have an intensity value higher than
Tseed are selected as seed points. The conditions for appending
a pixel p with intensity value g into a region 5 is:

1. |g-g(seed point)| < Dseed,
2. p is 8-connected with a pixel belenging to the region S5,

where g(seed point) is the intensity value of the corresponding
seed point and Dseed is a constant. This is repeated until all
pixels are assigned to some region. If the size of a region falls
below a threshold Tsize the region is discarded as
corresponding to noise rather than to a possible object. When
this procedure concludes, a series of feature vectors is created
containing information for every region.

D. Feature Vector Clussification Component

The basis for the development of the feature vector
classifier is fuzzy logic. The choice of a fuzzy logic classifier is
preferred for its simplicity as well as for the direct way in
which it incorporates the experience into the structure of the
classifier. It allows for easy changes on the system’s behavior -
by fine-tuning the rule base or the membership functions that
fuzzify the input variables, thus, making the system capable of
adjusting to a variety of targets without much difficulty.

The process of classifying feature vectors is shown in
Figure 2. At first, the elements of each vector are assigned a
membership function. The mean intensity feature is fuzzified to
Low, Mid and High. Similarly, the size feature is divided to
three linguistic .variations Small, Medium and Large,
respectively. Every one of them is described by a trapezoidal
function such as:

C))
p(x)=1. P :
c—d
0, x<a, xz2d

a ,b, ¢ d are constants. Examples of membership functions
used are shown in Figures 3 and 4. After completing the
fuzzification process, the results are evaluated through a rule
based inference engine. Rules determine the output of the
system and give an indication regarding the presence or the
absence of a target in the area. Rules are stated in the well
known IF THEN form, as for example:

]
x—

cC<xsd

IF Mean Intensity is High AND Size is Medium
. THEN Target ID possibility is High.
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Fig.2: Block diagram of the feature vector classification subsystem.

The output variable is the target identification possibility
and its membership functions are depicted in Figure 5. After
examining the rules and applying the aggregation method
(max), the defuzzification process yields a number in [0,1] that
classifies each region into one out of three different classes, If
the output possibility is lower than a threshold Tlout =0.5 then
the region, whose feature vector produced that result, has LOW
possibility of being the designated target. A MEDIUM
possibility classification occurs when the cutput is between
Tlout =0.5 and T2out =0.7, while HIGH possibility is assigned
to those regions that produce an output higher than T2¢ur =0.7.

E.  Alarm raising component

The alarm-raising module of the machine vision system is
the one responsible for the final decision regarding the
presence or the absence of the object in an image. If this
decision is left solely to the fuzzy classifier, some random
events, such as reflections or noise, can trigger an alarm by
inducing into the image bright regions that do not actually
correspond to a thermal source. Exploiting the observation that
such events are small in duration, this kind of false alarms can

be avoided if a sort of duratdon threshold is
intreduced.
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Fig.3: The Mean Intensity membership functions

A region must be classified as of high possibility over
several frames before it could be considered as valid
indication for the existence of the target.
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Fig.4: Membership functions of the Size of Region feature.
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Then the alarm is raised and it is turned off only if the
object is no longer detected. In this way the classifier’s initial
evaluation of a region is confirmed or rejected by its
subsequent ones. -
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Fig.5: The membership functions for the output variable target identification
possibility

The mechanism that implements this behavior uses a
registry to keep track of all the regions that are given a high
possibility of being the target and therefore are likely to raise
the alarm. In this registry the position of every such region is
stored as well as a variable indicating the persistence with
which the classifier assigns a high ID possibility to that region.
This variable is increased by a constant, e.g. 2, every time the
region is given a high ID possibility and is decreased by 1 in

- any other case. If the value of persistenice exceeds a certain
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threshold Tor the alarm is set. On the contrary, should it fall
below Toff the alarm is turned off.

For the system to be able to accumulate evaluations for a
certain region, it must also be able to identify and track it over
subsequent frames, Based upon the assumption that a region
shifts only by a small amount of pixels over two successive
frames, the algorithm searches for it in the same area of the



next frame. For a region to be tracked it must not shift more
than a distance Tvar from its position in the previous frame.

The various thresholds used throughout the system can be
viewed as the parameters that define its behavior and
performance. For convenience they are summarized in Table 1.

F.  Complexity

Dealing with two-dimensional images may be
computationally intensive. However, in this case, the
algonthms used, namely the noise reductlon and region
growing ones, did not exceed the order of O(n %) in complexity,
with » being the dimension of a square image (#xn}. Also,
under the current implementation, the fuzzy classifier is found
to have its own complexity depending mainly on the product of
the number of features (n) and the number of rules in its
inference engine (m). So, in general, it is of order O(nxm).

Although one can argue that O(’) algorithms do not scale
nicely, the various tests the system has been subjected to,
showed that, for images of resolution up to 320x240 pixels,
real time or near real time performance can be achieved on
average commodity hardware. This resolution is found on the

meost mid valued IR cameras available today and it is sufficient

for most applications like the one described in the next Section.

TABLE L PARAMETERS QF THE SYSTEM
" Parameter | __Meaning

Feature extraction component

* Tseed Intensity threshold fur the selectmn of
seed points
Tsize . Region size threshold . ]
Dseed Intensity threshold for the similarity
) criterion  satisfied by the pixels
belonging to the same region
Classification component -

Parameters that define the fonn of the
trapezoidal membership functions of

the fuzzy classifier

a; by oy forij=1,2,3

. Tlout, T2out Thresholds ~separating the region
classes in terms of target ID

possibility

Alarm raising component

Ton, Threshold for the persistenice variable

above which the alarm is set on

| Toff

Threshold for the persistence variable
above which the alarm is set off

| Tvar Limit of a region’s shift between two

conisecutive frames

III. CASESTUDY-

In order to evaluate the system in a real scenario, a test case
was set up. A small fire was set in.a semi-rural area, having
taken of course all the necessary precautions. The system
described in the previous section was configured for the
purposes of forest fire detection. In particular, the membership
functions of the mean intensity and size features were altered to

better describe the inquired object. The resulting functions are -

" shown in Fig.6 and 7. All the other parameters of .the fuzzy
classifier were retained. :
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Fig.6: Membership funcnons of the Size of Region feature for the forest fire
detection case.
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Fig.7: The Mean Intensity membershlp functions for the forest fire detection
case

. For visualization purposes the.regions-that are classified as of
“ow possibility are painted green, while orange and red were
chosen to indicate regions of medium and high possibility
respectively. Also, when a certain region causes the alarm to be
set, it is pinpointed by superimposing a crosshair over it.

The system’s performance was evaluated both in the
presence and absence of the fire. Results are presented in Fig.8
and Fig. 9. (For more results please visit
http://Awww.dpem.tuc.g/ISRL/ENPAGES/EN PERSONNEL/
EN_KONTITSIS/IR _ RESU'LTS)

V. AUTOMATIC PARAMETER SELECTION

In this section the attempt te automate the design process of
the system is presented. The aim is to derive a system that -
functions similarly to the one designed for forest fire detection
not by selecting all of its parameters manually. This implies
that some of them will be defined using some automatic
method. The parameters chosen to undergo automatic selection
are those that define the form of the membership functions



used to describe the linguistic variations of the mean intensity
feature (see equation 4). Due to the plethora of possible
solutions and the inadequate knowledge of the solution space, a
genetic algorithm was employed.

A. Basic Elements of the Genetic Algovithm

The genetic algorithm (GA) implemented in this paper, like
any other GA, includes the following [7]:

Chromosomes consisted of the a; b; ¢, d, for i=1,2,3
parameters were used (see equation 4). Recall that
there are three membership functions for the mean
intensity feature. Each one of the chromosomes
represents a possible solusion to problem of selecting
the parameters.

Fig 8: Result of the sstem's response in the ence of a fire

s The fitness function, through which all chromosomes
are gvaluated, has three branches. If an image contains
a fire and the system raises the alarm, then

—0.05 .

fitness(x) = ke™" "™ where k is a constant and
dist is the Buclidian distance of the region, which the
systemn indicates as a thermal source from its actual

position. If there is no fire present and the alarm isn’t
raised, then fitness=1. In any other case fitness=0.

A selection operator that selects individuals for mating.
Every individual is chosen as many times as the ratio
of its fitness to the total fitness of the population.

An operator responsible for the crossover of two
mating chromosomes. It randomly chooses a locus and
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with a probability p~0.7 exchanges the gene
subsequences of the two chromosomes.

Finally a mutation operator is used to add to -every
gene of the offspring a random number in [-5, 5).
Mutation probability was p,=0.001.

Fig 9: Result of the system’s respone in the absence of a fire

The GA was used to evolve a population of 100
chromosomes for 50 generations. After several runs the fittest
individual yielded the membership functions depicted in Fig.
10.

It can be observed that the Low and Mid membership
functions almost share the same support set. This is due to the
GA’s tendency to favor those individuals that can identify a
region comresponding to a fire, without paying any attention to
the characterization of the rest of the regions.

B. Results

A training set of about 200 images was used during the runs
of the GA. Among them there were some that had a fire present
as well as some without one, The system designed by the fittest
individual managed to respond correctly to about 90% of the
cases. Afterwards the system was prompted to evaluate a
different sequence of images with more or less the same
success, although it didn’t entirely avoid some false alarms.
Fig. 11 and 12 show exactly that. In comparison with the
system that had manually selected parameters, it shows aboyt
the same performance being worse only in terms of false alarm
occurTence.
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