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Abstract −−−− Ordinary t-timed Petri Nets are used for 

modeling, analysis and synthesis of random topology 
production systems and networks. Each production system is 
first decomposed into production line (transfer chain), 
assembly, disassembly and parallel machines modules and 
then their corresponding modular Petri Net models are 
derived. The overall system PN model is obtained via 
synthesis of the generic modules satisfying system 
constraints. P- and T- invariants are calculated and given a 
random topology production system, the total number of the 
system PN model nodes (places, transitions) is calculated 
from the corresponding generic PN modules. Results show 
the applicability of the proposed methodology. 

 
I. INTRODUCTION 

 
Petri Nets and their modifications are widely used to 

study DEDS, production systems and networks. A Petri 
Net (PN) is defined as the five-tuple: PN={P, T, I, O, m0}, 
where P={p1, p2 ... pn} is a finite set of places, T={t1, t2... 
tm} is a finite set of transitions, P U T=V, where V is the 
set of vertices and P ∩ T = Ø. I: (P x T) → N is an input 
function and O: (P x T) → N an output function with N a 
set of non–negative integers, and m0 the PN initial 
marking. PN structural and behavioral properties capture 
precedence relations and structural interactions between 
system components [1]-[16].  

In this paper, (which is the natural outgrowth of 
previous reported research [15], [17]) t-timed ordinary 
modular PNs are utilized for modeling, analysis, synthesis 
and simulation of random topology dedicated production 
systems, in which machines fail and are repaired 
randomly. Four generic PN modules, corresponding to the 
production line (or transfer chain), assembly, disassembly 
and parallel machines modules are derived. The overall 
system PN model is obtained via synthesis of the 
component models considering simultaneously overall 
system constraints, and the Martinez-Silva algorithm [19] 
is used to calculate P- and T- invariants. Given a random 
topology production system, the total number of the 
system PN model nodes (places, transitions) is calculated 
from the corresponding generic PN modules. 

Paper contributions include: i) modular PN based 
approach is independent of the system architecture and 
structure, ii) the model construction method may be 
applied to any configuration DEDS, and iii) analysis and 

synthesis of any complex system is accomplished in terms 
of analysis and synthesis of the 4 basic PN modules. 

Section 2 presents the generic modules; Section 3 
derives their PN models; Section 4 presents the overall 
system PN model; Section 5 presents simulation results, 
while Section 6 concludes the paper.  
 

II. PRODUCTION SYSTEM GENERIC MODULES 
 
A production system may be viewed as a network of 

machines/workstations and buffers. Random machine 
breakdowns disturb the production process and starvation 
or blocking may occur affecting the downstream and 
upstream buffer levels. Events that may occur in a 
production network include changes in buffer states (full 
or empty) and changes in machine states (up or down). 
When a machine breaks down preceding machines remain 
operating until one of their downstream buffers is filled. 
Similarly, succeeding machines continue processing until 
their upstream buffers are empty.  
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Fig.1 Fundamental, generic, modules 

The production floor modeling approach introduced 
and explained in [15], [17] is extended so that every 
production system or network is decomposed into the line 
(chain), assembly, disassembly and parallel machines 
module, the simplest version of which is shown in Figure 
1 (circles and rectangles represent buffers and machines; 
notation is straightforward). These modules, if connected 
to each other may represent manufacturing networks of 
various layouts. 
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Generalizations of the four generic modules are 
obvious; transfer chains may contain n machines (n+1 
buffers), assembly (disassembly) modules may have n 
input (output) buffers and parallel machine module may 
have n machines. 
 

III. PETRI NET MODELS OF GENERIC MODULES 
 
The four basic PN models corresponding to the four 

generic modules of Figure 1 (called generic PNs from 
now on) are shown in Figures 2-5. Timed transitions are 
presented as white rectangles, while immediate transitions 
as black rectangles. All transition input and output arc 
weights are equal to 1. Table 1 explains the meaning of 
each place and transition. Places p0 – p5 and transitions t1 
– t4 have the same meaning in all four generic PNs. 
Transitions correspond to system activities resulting in 
state changes, while places correspond to resource 
(machine, parts) availability or state (machine up, down, 
working, free). Table 2 shows PN module complexity for 
the general case of n machines in each module.  
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Fig.2 Production line (chain) PN module 
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Fig.3 Assembly PN module 
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Fig. 4 Disassembly PN module 
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Fig. 5 Parallel machines PN module 

The generic PN modules have been derived based on 
the following mostly realistic assumptions: i) buffers have 
finite capacities, ii) machines operate at a given speed that 
may change at specific moments according to events 
taking place in the system, iii) setup times and 
transportation times of pieces through the production 
system are negligible compared to production times, iv) 
machine breakdowns may happen infinitely often, but only 
after the completion of a production cycle. Tokens shown 
in the generic PN modules are for demonstration purposes 
only: the token in p1 indicates that a machine is free and 
operates (next piece production may begin), but when one 
production cycle terminates, the next cycle starts either 
immediately (through t2) or after the appearance of a 
machine breakdown and its repair (path p2, t3, p5, t4). 
 

A. Discussion 
 

Considering the four generic PN modules as shown in 
Figure 1 (not for simulation purposes) with any finite 
initial marking m0, several observations are made: a) As 
long as there is part availability in the input buffer(s), all 
four generic PNs after the completion of one production 
cycle return to the state of starting a new cycle; b) the 
parts number in the initial buffer(s) defines the exact 
number of production cycles; c) all modules are k- 
bounded; d) modules are non-conservative (transition t3 
consumes two tokens and produces one, in assembly and 
disassembly module transition t1 is also non conservative, 
in parallel machines module t7 is non conservative); e) 
modules are non-persistent (firing of t3 may disable t2); f) 
modules are not repetitive and not consistent. 

For the transfer chain, the upper limit for k is defined as 
min {max {C0, C3}, (m0(p0)+m0(p3))}, where Ci is the 
maximum capacity of pi. Maximum number of tokens in a 
place is the minimum of maximum capacity of two buffers 
and the sum of the initial tokens in these places.  

For the assembly module, the upper limit for k is 
different since there are at two input buffers, defined as 
min {max {C0, C3, C6}, (m0(p3) + max{ m0(p0), m0(p6)})}.  
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For the disassembly assembly module, the upper limit 
for k is calculated considering two output buffers as min 
{max {C0, C3, C6}, (m0(p0) + max{ m0(p3), m0(p6)})}. 
 

B. Invariants 
 

The Martinez-Silva algorithm [19] is used to calculate 
the minimal P- and T- invariants (all other invariants are 
linear combinations of minimal). P-invariants are nonzero 
nonnegative integer solutions X of the equation XT A = 0 
that also satisfy XTm=XTm0 where X is an np-element 
vector, m0 the initial marking of the net and m a marking 
of the reachability set of m0, R(m0). T-invariants are the 
nonzero nonnegative integer solutions Y of the matrix 
equation AY = 0 where Y is nt-element vector. There are 
(np-r) basic P-invariants and (nt-r) T-invariants, where 
r=rank(A). P-invariants express a notion of token 
conservation in sets of places for all reachable markings 
without enumeration of the reachability set. T- invariants 
describe a transition firing sequence s, such that mj !!!! mj. 
Node Model Meaning 
P0 Common Parts available in initial buffer 
p1 Common Machine available to process part 
p2 Common Machine breakdown 
p3 Common Parts in final buffer 
p4 Common Machine finished process of a part 
p5 Common Machine out of order 

Assembly B type parts available in 
corresponding initial buffer 

Disassembly B type parts in the corresponding 
final buffer p6 

Parallel 
machines 

Second Machine (M2) available to 
process part 

p7 
Parallel 
machines Machine M2 breakdown 

p8 
Parallel 
machines Machine finished process of a part 

p9 
Parallel 
machines Machine M2 out of order 

t1 Common Machine processing (producing) 
part 

t2 Common Empty machine’s signal return 
t3 Common Machine breaks down 

t4 Common Machine has been repaired and is 
available to produce again 

t5 
Parallel 
machines 

Machine M2 is processing 
(producing) part 

t6 
Parallel 
machines 

Empty machine’s signal return for 
M2 

t7 
Parallel 
machines Machine M2 breaks down 

t8 
Parallel 
machines 

Machine M2 has been repaired and 
is available to produce again 

Table 1 Basic modules node (P and T) explanation 

Model Nodes 
type 

Basic (generic) 
model 

Generalized model 
(n components) 

P 6 5 * n + 1 Transfer 
chain T 4 4 * n 

P 7 n + 5 Assembly 
T 4 4 
P 7 n + 5 Disassembly 
T 4 4 
P 10 2 + 4 * n Parallel 

machines T 8 4 * n 
Table 2 Complexity of generalized PN modules for n machines 

The transfer chain module has 2 P-invariants and no T-
invariant. The P-invariants are {1 0 0 1 0 0} and {0 1 0 0 1 
1} resulting in m(p0) + m(p3) = n1 and m(p1) + m(p4) + 
m(p5) = 1. The first P-invariant guarantees that the sum of 
parts in the initial and in the final buffer is constant and 
equal to the initial sum of parts in these buffers n1, while 
the second shows 3 mutually exclusive machine states 
(machine ready to process part, empty or machine 
breakdown). The two above P-invariants are common for 
all four modules; however the other modules have one 
more. The third P-invariant of the assembly module is 
m(p6)+m(p3)=n2 and refers to the sum of tokens of the 
second initial buffer and final buffer that is equal to the 
initial sum of parts in these two buffers. The third P-
invariant of the disassembly module is m(p0)+m(p6)=n2 
and refers to the sum of tokens of the initial buffer and the 
second final buffer. The third P-invariant of the two 
parallel machines module is m(p6)+m(p8)+m(p9)=1 and 
refers to the mutually exclusive states of the second 
machine M2, same with the ones of the first machine. 

 
IV. PN MODULE SYNTHESIS 

 
The synthesis procedure of the simplest two transfer 

chains is shown in Figure 6. Generalizations are provided.  
Observing Figure 6, it is obvious that places p3 and p6 

are fused in place p3-6. The total number of places is 
reduced by one, while transitions are equal to the total of 
each module transitions. The combined PN input places 
are reduced by one (p3-6 is an internal place, not input 
buffer any more).  The maximum capacity of p3-6 may be 
defined as C3-6 = min{C3, C6} or C3-6 = max{C3, C6} or 
with any number in between (based on system 
constraints). Obviously, m0(p3-6)=m0(p3)+m0(p6). 

The combined PN properties may be detected 
accordingly by simulation and use of appropriate tools. 
There exist three P-invariants (two are identical with the 
individual module P-invariants). Two refer to the mutually 
exclusive states of the combined PN given by equations 
m(p1)+m(p4)+m(p5)=1 and m(p7)+m(p10)+m(p11)=1. The 
third refers to the preservation of the total number of parts 
in the PN and is given by m(p0) + m(p3-6) + m(p9) = n1, 
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where n1 is the initial sum of parts (tokens) in the three 
places. Synthesis of other generic PN modules is obtained 
in a similar way but due to space limitations are omitted. 
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Fig. 6 Synthesis of two generic transfer chain modules 

 
A. Generalizations 

 
It is possible to calculate the number of nodes of a 

random topology production system PN model from the 
corresponding PN modules that compose it and from the 
number of external parts entering the system. The latter 
number is necessary to compute the number of fused 
places in the individual modules connection points. 

Consider first that a production system combined PN 
model is derived in terms of the four generic Petri Net 
modules; that is n1 modules of transfer chain, n2 modules 
of two-piece assembly, n3 modules of two-piece 
disassembly, n4 modules of two-parallel machines, and 
that there are n5 (external, non-fused) input places. The 
combined PN model consists of 4*(n1+n2+n3)+8*n4 
transitions. The total number of generic PN modules 
places when considered separately is 6*n1+7*(n2+n3)+10 
*n4. Fusion of places at connection points reduces the 
number of places by n1+n3+n4+2*n2–n5 (number of places 
that are not external inputs). Thus, the total number of the 
combined net places is 5*(n1+n2)+6*n3+9*n4+n5.  

Considering next individual PN modules as shown in 
Table 2, the total number of transitions is given by 

∑ ∑
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+++
1 4

1 1
32 *4*4)(*4

n

i

n

j
ji llnn , where li and lj 
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where li1, li2, li3, li4 show the number of machines (chain), 
number of input and output buffers in the assembly and 
disassembly modules, and the number of parallel 
machines in the parallel machine module, respectively. 

 
V. A CASE STUDY 

 
The production system of Figure 7 with its PN model 

shown in Figure 8 is used as a case study [15], [17]. The 
system is composed of 2 transfer chains, 2 assembly 
modules and 1 disassembly module. Parts enter the system 
through initial buffer (Module 1), while parts reaching the 
final buffer after machine M5 are final parts ready to be 
removed from the system. PN consists of 28 places and 20 
transitions. 5 transitions are immediate corresponding to 
potential machine breakdowns. There are 2 external input 
places p0 and p25. Parts reaching p29 are finished parts. 

From Figure 9, it is obvious that internal buffer p9-19 is 
full of parts for a large percentage of the system function, 
potentially resulting in frequent machine (M4) blockage, 
while other buffers (like p22-32) do not even reach half of 
their capacity. Changing buffer capacities, for example by 
reducing arbitrarily the capacity of buffer p22-32 to 3 (from 
8) and by repeating the simulation with the rest of the 
parameter values the same, the simulation is terminated 
after 547 steps with total duration 228 time units. Figure 
10 shows the internal buffers levels during this simulation.  

Next reduction of the buffer p16-26 capacity from 8 to 5 
is tried. Simulation is terminated after 553 steps and the 
total time is 229 time units. The mean production time 
after these two changes is 6.94 time units. Figure 11 
shows the results. This process may be repeated (trial and 
error) until all buffers work at their capacities. 
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Fig. 7 A Production System and its module decomposition
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Fig.8 Overall system Petri Net model 
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Fig. 9 Internal buffer levels during simulation 
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Fig. 10 New buffer levels-reduced capacity of p22-32 
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Fig. 11 New buffer levels-reduced capacity of p16-26 

System performance may also be improved by 
changing machine times, reducing idle periods, etc. By 
reducing the production time of machine M4 by 1 time 
unit, the simulation is completed after 475 steps and the 
total time needed to produce the 33 pieces is 196 time 
units. The mean production time is 5.94 time units, 1 time 
unit less than before (15% performance improvement). 
The new buffer levels are shown in Figure 12. 
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Fig. 12 Buffer levels after changing M4 production rate. 

Further system performance improvement may be 
obtained by studying machine breakdown behaviour. 
Reducing the frequency of machine breakdown 
appearance (with preventive machine maintenance) will 
increase system operational periods. Let’s consider that 
the mean time of the exponential breakdown appearance 
for machine M4 is 6 time units instead of 3. In this case 
the simulation is completed in 459 steps with total 
duration of 189 time units and mean production time of 
5.73 time units, 0.21 time units less than before. Figure 13 
shows the corresponding buffer levels during simulation. 
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Fig. 13 New buffer levels after changing M4 breakdowns mean time 
Additionally, for this simulation, the corresponding 

machine operation rates are approximately 63.5% for M1, 
49.2% for M2, 52.4% for M3, 67.7% for M4 and 70% for 
M3. This shows that M2 and M3 are idle for longer time 
periods in comparison with the other machines (almost for 
half of the operational time of the system) and so they may 
be used for other activities as well. Figure 14 shows how 
production has changed as function of the changes made. 
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 An interesting point that concerns production systems 
and is obvious also by simulations, is that the behaviour of 
the net is heavily determined by the slowest machine, as 
other machines of the net are obligated to follow its 
production rhythms through the appearance and spread of 
blockages and starvation phenomena. 
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Fig. 14 Progress of the mean production cycle time in relation with the 

described system changes 

 
VI. CONCLUSIONS 

 
Modular PNs have been used for modelling, analysis 

and synthesis of random topology production networks. 
Four generic modules have been considered and their 
corresponding generic PN modules have been derived. 
Generalizations have been provided and expressions for 
the number of system nodes for random configuration 
systems have been calculated. P-invariants provide further 
insight to production systems study. Simulation results 
demonstrate the effectiveness of the proposed method. 
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