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An Interface System for Real-Time Mobile Robot Environment 
Mapping using Sonar Sensors

J. Aekaterinidis, K. Kostoulakis, L. Doitsidis, K. P. Valavanis1, N. C.Tsourveloudis   

  
Abstract— A user friendly graphical tool has been designed to 

provide in real-time detailed 2D graphical representations of a 
mobile robot’s workspace environment and trajectory. Sonar 
sensors are used to collect information related to the robot’s 
environment, including obstacle identification. Given the 
obstacles’ distance from the robot, their coordinates are 
calculated progressively, as the robot moves, and subsequently 
the whole environment is mapped in real time with minimum 
time-delays. 
 

Index Terms — Skid steering mobile robot, sonar sensor, 
environment mapping. 
 

I. INTRODUCTION 
The central objective of this paper is to develop an efficient 

user friendly mobile robot – computer interface system, 
capable of constructing and duplicating in real-time with 
minimum time-delays the actual robot trajectory and 
workspace environment map, relying only on fused sonar 
sensor data. It is considered that the mobile robot operates in 
an unknown and possibly hostile (as well as generally 
remote), obstacle filled environment that needs be explored / 
investigated and/or studied through the “eyes” of a domain 
expert who either cannot reach it, or it is too dangerous to 
work in it.  As a first step, it is considered that the mobile 
robot operates indoors; a 2-D environment map interface is 
built as the best and most realistic compromise between speed 
and quality of displayed information.   
 There has been considerable research in the area of robot 
environment mapping, but only research very closely related 
to the proposed approach is reviewed here. In [2] the mobile 
robot map construction uses data from a sonar-based range 
sensor, which is based on a 2-D grid consisting of a matrix of 
cells each containing an occupancy value and a certainty 
value. 
These values are used by the occupancy and localization 
algorithms, respectively, to construct the map. Preprocessing 
is required, which delays the whole map building process. In 
[3] cognitive maps are used to build a map for a navigating 
robot equipped with sonar sensors. A key issue is the fact that 

a representation is computed for each local space the robot 
visits. Representations, connected in the way they are 
experienced, form the robot’s cognitive map. Both 
approaches, although technically sound, appear quite complex 
and computationally demanding for real-time implementation. 
Alternative approaches to map building based on VRML 
include [4] and [5], however the objectives were the robot 
environment model building and communication protocol 
issues, and not actual real-time implementation. 
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 The proposed approach differs from related work in that it 
derives a very simple, easily implemented in real-time, 
geometry-based algorithmic process using at each time-step 
the robot’s coordinates (x, y), heading angle (θ) and the sonar 
sensors detected minimum obstacle distance to build the 
workspace environment map including static obstacles 
location, tracing dynamic obstacle movement and monitoring 
continuously potential collisions in four main directions, 
front, back, left and right, as well as mobile robot rotational 
and translational speed. The actual real-time sonar sensor 
based mobile robot controller is a two-layer fuzzy logic 
controller that combines robot planned, re-planned, reflective 
and reactive behaviour in dynamic environments. Mobile 
robot goal-directed behaviour is controlled through 
controlling robot steering, while reaction-directed behaviour is 
monitored and controlled through analysis of potential 
collisions [1]. No assumptions are made on the environment a-
priori information, on the shape of obstacles and their 
velocities. The environment map is constructed and it is 
viewed “on the fly” as the robot moves within the workspace 
environment. Therefore, the user, domain expert, observing 
the environment map through the interface, may command, in 
real-time, the robot to further investigate/explore a certain area 
of interest within its workspace. The interface system may 
operate in two modes, constructing a workspace environment 
map: i) off-line with user defined information related to robot 
trajectory, obstacle location, collision possibilities, robot 
speed, and, ii) on-line where all related information is 
provided by the actual robot at every time instant. It is obvious 
that map building may result from a combination of the above 
two modes, where some information may be a-priori defined 
(for example, static obstacle locations if known) while the rest 
is obtained in real-time. 
 Although the proposed technique may be applied to a 
variety of mobile robots, the specific robot type used is the 
ATRV–mini skid steering robot manufactured by iRobot 
(previously known as RWI: Real World Interface).  
 The rest of the paper is organized as follows: Section II 
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summarizes ATRV-mini characteristics, constraints and 
presents briefly the designed fuzzy-logic controller. Section 
III presents in detail the proposed approach while Section IV 
discusses the interface platform. Results are provided in 
Section V, while Section VI concludes the paper. 

  

II.  VEHICLE CONFIGURATION AND REAL-TIME CONTROL  
The mobile robot ATRV-mini used for experimentation is 

shown in Figure 1. The vehicle has a ring of 24 sonar sensors 
that are placed around the vehicle and grouped in pairs Ai, 
i=1,…,12, as shown in Figure 2, each with a (manufacturer 
claimed) maximum measurement range of 4m, returning data 
readings every 0.1s [1]. Exhaustive experimentation and real-
time testing has revealed that the sonar sensor maximum 
effective and reliable measurement range is approximately 
2m, thus this is the effective sensor range considered in all 
implementations. The minimum of each sonar sensor pair 
readings is considered as a distance measure from (potential) 
obstacles.  

 

 
Figure 1: DAMON: The ATRV - Mini mobile robot of the 

Laboratory for Intelligent Systems and Robotics at the 
Technical University of Crete. 

 
For this robot system, a two-layer Mamdani-type controller 

has been designed and implemented [1], as shown in Figure 3. 
In the first layer, there are four fuzzy logic controllers 
responsible for obstacle detection and collision possibility 
calculation in the four main directions, front, back, left, right. 
The four controllers receive as inputs sonar sensor data and 
return as output the respective direction collision possibility. 
Data from group sensors A1, A2,…, A5 (5 inputs) and group 
sensors A7, A8,…, A11 (5 inputs) serve as inputs to the 
individual controllers responsible for the calculation of the 
front and back collision possibilities, respectively. Data from 
group sensors A5, A6, A7 (3 inputs) and group sensors A11, A12, 
A1 (3 inputs) serve as inputs to calculate the left and right 
possibilities, respectively. The individual fuzzy controllers 
utilize the same membership functions to calculate the 
collision possibilities. The possibilities calculated in the first 
layer are the input to the second layer along with the angle 

error (the difference between the robot heading angle and the 
desired target angle taking values ranging from -1800 to 1800); 
the output is the updated vehicle’s translational and rotational 
speed. The second layer fuzzy controller receives as inputs the 
four collision possibilities and the angle error, and outputs the 
translational velocity (responsible for moving the vehicle 
backward or forward) and the rotational speed (responsible for 
the vehicle rotation). Design and implementation details may 
be found in [1]. 
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Figure 2: Sonar sensor grouping  
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Figure 3: Block diagram of the fuzzy logic controller 

 

III. THE PROPOSED APPROACH 
As previously stated, the main objective is to develop a 

graphic interface system by deriving a simple and efficient 
algorithmic process that builds the robot’s workspace 
environment map in real-time with minimum time delays. The 
single source of information is the data provided by the robot 
ring of sonar sensors.  
 In principle, considering sonar sensor data readings that 
correspond to measurements of the minimum obstacle 
distance they detect within a given range, and knowing or 
calculating the robot’s coordinates at every time instant (in 
this case every 0.1s) one may compute obstacles’ coordinates 
and plot the corresponding points at every time step. This 
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process, when repeated for the duration of the robot’s 
movement, results in a map of the robot workspace 
environment. Stated differently, knowing a point’s distance 
from given sonar and the coordinates of that sonar, the point’s 
coordinates may be computed by simple geometric 
calculations. 
 The ATRV-mini sonar sensor ring configuration is shown 
in Figure 4. Each sonar i forms an angle φi (from φ0 το φ23) 
with the robot vertical axis; Ri is the distance between sonar i 
and the vehicle’s center. 

X
(Vertical Axιs)

Y
(Horizontal Axιs)

φi

φ0

φ1
φ2

R2 R1

R0

 
Figure 4: Sonar ring arrangement 

 
Each sonar sensor has a viewing cone within which it 

“searches” for an obstacle. Further, the energy radiated by a 
sonar is not focused in a straight line. Instead it is distributed 
within the viewing cone, its size measured by the beam-width 
angle which, in this case is 30o as shown in Figure 5.  This 
means that although each sonar is capable of detecting 
obstacles within this cone, this capability results in a large 
angular uncertainty of the range reading. To overcome this 
uncertainty, it is assumed for simplicity purposes that when a 
sonar “detects” an obstacle, the latter lies in the main direction 
of the cone. This assumption is valid and realistic since the 
effective sonar range is small (2m) and the corresponding 
viewing cone arcs are small, too. For example, if the sonar is 
pointing at 90o the actual reflection might be coming from an 
obstacle somewhere between 75o and 105o. The previous 
assumption dictates that the obstacle is detected at the 90o 
direction.  

The geometric configuration of a skid steering mobile 
vehicle in the X-Y plane is shown in Figure 6, where θ is the 
vehicle rotational angle, φi is the angle of sonar i from the 
vertical axis of the vehicle and Ri is the distance between the 
sonar and the vehicle center. Assume the vehicle starts from 
position (x, y) = (0, 0) and θ=0, and after a short period of 
time its position becomes x=x1, y=y1 and θ=θ1. The obstacle 
coordinates (xob, yob) detected by sonar i may be calculated as:  

Υob

Xob

d3

 
xob  =  x1 + (d3+R3) cos(φ3+θ1)  
yob  = y1 + (d3+R3) sin(φ3+θ1)  

 In general, given the vehicle position as (x, y, θ) the 
obstacle coordinates detected by sonar i are calculated by the 
equations: 

xob  =  x + (di+Ri)cos(φi+θ) 
yob  =  y + (di+Ri)sin(φi+θ) 
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Figure 6: Example of coordinate’s computation. 

 

IV. THE INTERFACE PLATFORM 
The Robot Environment Mapping Using Sonars (REMUS) 

application has been developed using the RedHat 7.2 Linux 
operating system. The software has been written in C++ along 
with the g2 2-D graphics library [7]. REMUS is equipped with 
an easy to use graphical user interface, developed with the Qt 
toolkit. If and when necessary, the Mobotsim simulator [8] 
was used for simulation purposes and testing of the REMUS 
system.  
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A. Description 
The main task of the REMUS application is to represent the 

environment around the moving vehicle based on the values 
returned from sonars. Thus the main input data are the 
coordinates x and y of the vehicle, the rotational angle θ and 
the 24 distance values returned from the vehicle’s sonars.  

Nevertheless, extra functionality was added to REMUS. 
Thus the user can also view a plot of the collision probabilities 
(at left, right, front and back directions) computed by the 
fuzzy logic algorithm for the navigation of the vehicle as 
described in [1], as well as the angular and linear velocity. 
Last but not least, the user can supply the coordinates of 
known obstacles in order for them to be displayed in the case 
where the main concern is the vehicle movement and not the 
environment mapping. With this option the user can also 
verify whether the mapping results by the robot agree with the 
original configuration of the obstacles. 

 

B. Application’s GUI 
The application’s interface consists of three main areas 

(tabs). The first one (Input Files Tab), Figure 7, deals with 
the input files supplied from the user. These are:  

i. The Position Input File, which contains the x, y 
coordinates and the rotational angle of the vehicle at 
each instance. 

ii. The Sensor Input File, which contains the 24 distance 
values returned from the sonars at each instance. 

iii. The Velocities / Probabilities Input File, which 
contains the left, right, back and front collision 
probabilities as well as the linear and angular 
velocities of the vehicle, at each instance. 

iv. The Predefined Objects’ Coordinates Input File, 
which contains the coordinates of known rectangular 
obstacles lying around the vehicle. 

It should be made clear that the only required field is the 
Position Input File. The other three provide extra functionality 
and are optional, so the user may not supply the corresponding 
filenames for them if he/she so wishes. 

The second tab (Visual Options Tab), Figure 8, consists of 
three checkboxes, which relate to the visual preferences of the 
user. More precisely the user may choose or not, to view the 
vehicle’s trajectory, the known obstacles around the vehicle, 
and the velocity/collision probabilities plots. 

The third tab (Preferences Tab), Figure 9, consists of 7 
input fields where the user can define the vehicle’s 
dimensions, the floor dimensions, the maximum viewing 
distance of the sonar, the sample rate with which the vehicle 
transmits data and the sonar angle file. The maximum viewing 
distance of the sonar determines the threshold where distances 
with greater value are ignored (see section III.A for more 
details). The sonar angle file contains the angle that each 
sonar forms from the vertical axes (φi in Figure 4). In the case 
where the application is used to display the environment 
around an ATRV-Mini robot, the user can use the sensor 
angle file corresponding to this robot by selecting the 
appropriate robot type. In other cases the user should define 
the sensor angle file, which corresponds to the robot used for 
his/her experiments.  

 

 
Figure 7. The Input Files Tab 

 

 
Figure 8. The Visual Options Tab 

 
After defining the appropriate input files and application’s 

options, the user can press the button at the bottom left corner 
in order to start the mapping of the environment around the 
vehicle. It should be noted that the user has the ability to save 
or load his/her preferences, as well as loading default values 
corresponding to the ATRV-Mini configuration. 
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Figure 9. The Preferences Tab. 

 

C. Main Application’s Window 
The main window of the application consists of three parts 

as seen in Figure 10.  
At the left column three plots are visible: the first one 

corresponds to the linear and angular velocities of the vehicle, 
the second, to the left and right collision probabilities and the 
third, to the front and back collision probabilities. 

 

 
Figure 10. The main window of the REMUS application 

 
At the top blue row the user can be informed about some 

essential parameters of the application. These are input 
parameters such as: the sensors’ maximum viewing distance, 
the floor dimensions, the robot dimensions and the sample 
rate. Apart from these values the user can also be informed 
about the x, y coordinates of the vehicle, the rotational angle θ 
and the linear/angular velocities. 

 

 
Figure 11. Obstacles at known positions. 

 

 
Figure 12. Vehicle environment mapping. 

 
 

V. RESULTS 

A. Test Cases of Environment Mapping 
In Figures 11 and 12, a test case of the environment 

mapping can be seen. The input data for this experiment was 
collected using the Mobotsim 1.0 mobile robot simulator [8]. 
The difference between Figures 11 and 12 is the visibility of 
the known obstacles (gray rectangles).  

 

 
Figure 13. Environment mapping with the ATRV-Mini robot. 
The maximum sonar viewing distance value was set to 3.0m 

 
As noted earlier (in section III) our approach is simple 

enough as we draw a black dot at the point where we believe 
that the sonar beam stroke. It is clear in Figure 12 that the 
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environment mapping is accurate enough and gives us a clear 
picture of the obstacles around the vehicle. 

Several additional experiments have also been performed, 
based on input data derived from the ATRV-Mini vehicle 
sonars. Results agree with those obtained using the Mobotsim 
simulator. In Figure 13 the environment mapping of the 
ATRV-Mini robot with 3 obstacles around it is presented. One 
may observe at the left side of the figure the plots of the linear 
and angular velocity and the left, right, back, and front 
collision probabilities. Due to the inaccuracy of the sonars it 
was also observed that “small objects”, not supposed to be 
there, have been mapped – illustrated with arrows in Figure 
14. However, having in mind that, as the maximum viewing 
distance threshold increases the sonar error increases too, one 
may avoid this phenomenon by adjusting appropriately this 
threshold. The threshold value used at the environment 
mapping in Figure 13 was 2.0m while in Figure 14 it was 
3.0m. 
 

B. Application’s Running Modes 
The REMUS application can be used either in real time or 

by supplying the required input files. In the real time mode the 
application is connected directly to the ATRV-Mini robot 
through UNIX sockets. Thus the user is able to view in real 
time the mapping of the environment around the vehicle. In 
the non-real time mode the user must supply basically the 
position input file.  

 

 
Figure 14. Environment mapping with the ATRV-Mini 

robot. The maximum sonar viewing distance value was set to 
3.0m. 

VI. CONCLUSION 
Although this application can already be used on its own 

for experimenting and testing in robot simulations, its 
combination with more sophisticated mapping algorithms 
would yield better results. However, the issue of complexity is 
still a factor that should be considered when we are talking 

about real time results. Some future improvements include a 
better user interface, more extensive tests with real robots and 
more accurate sonar functionality. 
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