
 1

An Interface System for Real-Time Mobile Robot Environment
Mapping using Sonar Sensors

J. Aekaterinidis, K. Kostoulakis, L. Doitsidis, K. P. Valavanis1, N. C.Tsourveloudis

Abstract— A user friendly graphical tool has been designed to

provide in real-time detailed 2D graphical representations of a
mobile robot’s workspace environment and trajectory. Sonar
sensors are used to collect information related to the robot’s
environment, including obstacle identification. Given the
obstacles’ distance from the robot, their coordinates are
calculated progressively, as the robot moves, and subsequently
the whole environment is mapped in real time with minimum
time-delays.

Index Terms — Skid steering mobile robot, sonar sensor,
environment mapping.

I. INTRODUCTION
The central objective of this paper is to develop an efficient

user friendly mobile robot – computer interface system,
capable of constructing and duplicating in real-time with
minimum time-delays the actual robot trajectory and
workspace environment map, relying only on fused sonar
sensor data. It is considered that the mobile robot operates in
an unknown and possibly hostile (as well as generally
remote), obstacle filled environment that needs be explored /
investigated and/or studied through the “eyes” of a domain
expert who either cannot reach it, or it is too dangerous to
work in it. As a first step, it is considered that the mobile
robot operates indoors; a 2-D environment map interface is
built as the best and most realistic compromise between speed
and quality of displayed information.
 There has been considerable research in the area of robot
environment mapping, but only research very closely related
to the proposed approach is reviewed here. In [2] the mobile
robot map construction uses data from a sonar-based range
sensor, which is based on a 2-D grid consisting of a matrix of
cells each containing an occupancy value and a certainty
value.
These values are used by the occupancy and localization
algorithms, respectively, to construct the map. Preprocessing
is required, which delays the whole map building process. In
[3] cognitive maps are used to build a map for a navigating
robot equipped with sonar sensors. A key issue is the fact that

a representation is computed for each local space the robot
visits. Representations, connected in the way they are
experienced, form the robot’s cognitive map. Both
approaches, although technically sound, appear quite complex
and computationally demanding for real-time implementation.
Alternative approaches to map building based on VRML
include [4] and [5], however the objectives were the robot
environment model building and communication protocol
issues, and not actual real-time implementation.

The authors are with the Department of Production Engineering and

Management, Intelligent Systems and Robotics Laboratory, Technical
University of Crete, Chania, Crete, Greece, GR – 73100.

1 To whom all correspondence should be addressed. E-mail:
k.valavanis@ieee.org

 The proposed approach differs from related work in that it
derives a very simple, easily implemented in real-time,
geometry-based algorithmic process using at each time-step
the robot’s coordinates (x, y), heading angle (θ) and the sonar
sensors detected minimum obstacle distance to build the
workspace environment map including static obstacles
location, tracing dynamic obstacle movement and monitoring
continuously potential collisions in four main directions,
front, back, left and right, as well as mobile robot rotational
and translational speed. The actual real-time sonar sensor
based mobile robot controller is a two-layer fuzzy logic
controller that combines robot planned, re-planned, reflective
and reactive behaviour in dynamic environments. Mobile
robot goal-directed behaviour is controlled through
controlling robot steering, while reaction-directed behaviour is
monitored and controlled through analysis of potential
collisions [1]. No assumptions are made on the environment a-
priori information, on the shape of obstacles and their
velocities. The environment map is constructed and it is
viewed “on the fly” as the robot moves within the workspace
environment. Therefore, the user, domain expert, observing
the environment map through the interface, may command, in
real-time, the robot to further investigate/explore a certain area
of interest within its workspace. The interface system may
operate in two modes, constructing a workspace environment
map: i) off-line with user defined information related to robot
trajectory, obstacle location, collision possibilities, robot
speed, and, ii) on-line where all related information is
provided by the actual robot at every time instant. It is obvious
that map building may result from a combination of the above
two modes, where some information may be a-priori defined
(for example, static obstacle locations if known) while the rest
is obtained in real-time.
 Although the proposed technique may be applied to a
variety of mobile robots, the specific robot type used is the
ATRV–mini skid steering robot manufactured by iRobot
(previously known as RWI: Real World Interface).
 The rest of the paper is organized as follows: Section II

mailto:k.valavanis@ieee.org

 2

summarizes ATRV-mini characteristics, constraints and
presents briefly the designed fuzzy-logic controller. Section
III presents in detail the proposed approach while Section IV
discusses the interface platform. Results are provided in
Section V, while Section VI concludes the paper.

II. VEHICLE CONFIGURATION AND REAL-TIME CONTROL
The mobile robot ATRV-mini used for experimentation is

shown in Figure 1. The vehicle has a ring of 24 sonar sensors
that are placed around the vehicle and grouped in pairs Ai,
i=1,…,12, as shown in Figure 2, each with a (manufacturer
claimed) maximum measurement range of 4m, returning data
readings every 0.1s [1]. Exhaustive experimentation and real-
time testing has revealed that the sonar sensor maximum
effective and reliable measurement range is approximately
2m, thus this is the effective sensor range considered in all
implementations. The minimum of each sonar sensor pair
readings is considered as a distance measure from (potential)
obstacles.

Figure 1: DAMON: The ATRV - Mini mobile robot of the

Laboratory for Intelligent Systems and Robotics at the
Technical University of Crete.

For this robot system, a two-layer Mamdani-type controller

has been designed and implemented [1], as shown in Figure 3.
In the first layer, there are four fuzzy logic controllers
responsible for obstacle detection and collision possibility
calculation in the four main directions, front, back, left, right.
The four controllers receive as inputs sonar sensor data and
return as output the respective direction collision possibility.
Data from group sensors A1, A2,…, A5 (5 inputs) and group
sensors A7, A8,…, A11 (5 inputs) serve as inputs to the
individual controllers responsible for the calculation of the
front and back collision possibilities, respectively. Data from
group sensors A5, A6, A7 (3 inputs) and group sensors A11, A12,
A1 (3 inputs) serve as inputs to calculate the left and right
possibilities, respectively. The individual fuzzy controllers
utilize the same membership functions to calculate the
collision possibilities. The possibilities calculated in the first
layer are the input to the second layer along with the angle

error (the difference between the robot heading angle and the
desired target angle taking values ranging from -1800 to 1800);
the output is the updated vehicle’s translational and rotational
speed. The second layer fuzzy controller receives as inputs the
four collision possibilities and the angle error, and outputs the
translational velocity (responsible for moving the vehicle
backward or forward) and the rotational speed (responsible for
the vehicle rotation). Design and implementation details may
be found in [1].

4A
1A 2

A
3A

5A

12A
6A

7A

Figure 2: Sonar sensor grouping

Rotational
Velocity

R
u
l
e
b
a
s
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Front-C

D
eg

re
e

of
 m

em
be

rs
hi

p

N-P H

-150 -100 -50 0 50 100 150

0

0.2

0.4

0.6

0.8

1

angle-error

D
eg

re
e

of
 m

em
be

rs
hi

p

LB L Zero R RBLS RS

-150 -100 -50 0 50 100 150

0

0.2

0.4

0.6

0.8

1

angle-error

D
eg

re
e

of
 m

em
be

rs
hi

p

LB L Zero R RBLS RS

-150 -100 -50 0 50 100 150

0

0.2

0.4

0.6

0.8

1

SteeringAngle
D

eg
re

e
of

 m
em

be
rs

hi
p

TLF TL TLSNo-chTRS TR TRF

Front_Collision

Right_Collision
Left_Collision

Back_Collision

Angle Error

Translational
Velocity

Figure 3: Block diagram of the fuzzy logic controller

III. THE PROPOSED APPROACH
As previously stated, the main objective is to develop a

graphic interface system by deriving a simple and efficient
algorithmic process that builds the robot’s workspace
environment map in real-time with minimum time delays. The
single source of information is the data provided by the robot
ring of sonar sensors.
 In principle, considering sonar sensor data readings that
correspond to measurements of the minimum obstacle
distance they detect within a given range, and knowing or
calculating the robot’s coordinates at every time instant (in
this case every 0.1s) one may compute obstacles’ coordinates
and plot the corresponding points at every time step. This

8A
9A

10A
11A

 3

process, when repeated for the duration of the robot’s
movement, results in a map of the robot workspace
environment. Stated differently, knowing a point’s distance
from given sonar and the coordinates of that sonar, the point’s
coordinates may be computed by simple geometric
calculations.
 The ATRV-mini sonar sensor ring configuration is shown
in Figure 4. Each sonar i forms an angle φi (from φ0 το φ23)
with the robot vertical axis; Ri is the distance between sonar i
and the vehicle’s center.

X
(Vertical Axιs)

Y
(Horizontal Axιs)

φi

φ0

φ1
φ2

R2 R1

R0

Figure 4: Sonar ring arrangement

Each sonar sensor has a viewing cone within which it

“searches” for an obstacle. Further, the energy radiated by a
sonar is not focused in a straight line. Instead it is distributed
within the viewing cone, its size measured by the beam-width
angle which, in this case is 30o as shown in Figure 5. This
means that although each sonar is capable of detecting
obstacles within this cone, this capability results in a large
angular uncertainty of the range reading. To overcome this
uncertainty, it is assumed for simplicity purposes that when a
sonar “detects” an obstacle, the latter lies in the main direction
of the cone. This assumption is valid and realistic since the
effective sonar range is small (2m) and the corresponding
viewing cone arcs are small, too. For example, if the sonar is
pointing at 90o the actual reflection might be coming from an
obstacle somewhere between 75o and 105o. The previous
assumption dictates that the obstacle is detected at the 90o
direction.

The geometric configuration of a skid steering mobile
vehicle in the X-Y plane is shown in Figure 6, where θ is the
vehicle rotational angle, φi is the angle of sonar i from the
vertical axis of the vehicle and Ri is the distance between the
sonar and the vehicle center. Assume the vehicle starts from
position (x, y) = (0, 0) and θ=0, and after a short period of
time its position becomes x=x1, y=y1 and θ=θ1. The obstacle
coordinates (xob, yob) detected by sonar i may be calculated as:

Υob

Xob

d3

xob = x1 + (d3+R3) cos(φ3+θ1)
yob = y1 + (d3+R3) sin(φ3+θ1)

 In general, given the vehicle position as (x, y, θ) the
obstacle coordinates detected by sonar i are calculated by the
equations:

xob = x + (di+Ri)cos(φi+θ)
yob = y + (di+Ri)sin(φi+θ)

30

S onar
Figure 5: Sonar sensor viewing cone

X

Y

θ+

θ-

θ1

φ3

Χ1

Υ1

R3

X=0 , Y=0 , θ=0

X=X1 , Y=Y1 , θ=θ1

Sonar 3

Obsacle

Figure 6: Example of coordinate’s computation.

IV. THE INTERFACE PLATFORM
The Robot Environment Mapping Using Sonars (REMUS)

application has been developed using the RedHat 7.2 Linux
operating system. The software has been written in C++ along
with the g2 2-D graphics library [7]. REMUS is equipped with
an easy to use graphical user interface, developed with the Qt
toolkit. If and when necessary, the Mobotsim simulator [8]
was used for simulation purposes and testing of the REMUS
system.

 4

A. Description
The main task of the REMUS application is to represent the

environment around the moving vehicle based on the values
returned from sonars. Thus the main input data are the
coordinates x and y of the vehicle, the rotational angle θ and
the 24 distance values returned from the vehicle’s sonars.

Nevertheless, extra functionality was added to REMUS.
Thus the user can also view a plot of the collision probabilities
(at left, right, front and back directions) computed by the
fuzzy logic algorithm for the navigation of the vehicle as
described in [1], as well as the angular and linear velocity.
Last but not least, the user can supply the coordinates of
known obstacles in order for them to be displayed in the case
where the main concern is the vehicle movement and not the
environment mapping. With this option the user can also
verify whether the mapping results by the robot agree with the
original configuration of the obstacles.

B. Application’s GUI
The application’s interface consists of three main areas

(tabs). The first one (Input Files Tab), Figure 7, deals with
the input files supplied from the user. These are:

i. The Position Input File, which contains the x, y
coordinates and the rotational angle of the vehicle at
each instance.

ii. The Sensor Input File, which contains the 24 distance
values returned from the sonars at each instance.

iii. The Velocities / Probabilities Input File, which
contains the left, right, back and front collision
probabilities as well as the linear and angular
velocities of the vehicle, at each instance.

iv. The Predefined Objects’ Coordinates Input File,
which contains the coordinates of known rectangular
obstacles lying around the vehicle.

It should be made clear that the only required field is the
Position Input File. The other three provide extra functionality
and are optional, so the user may not supply the corresponding
filenames for them if he/she so wishes.

The second tab (Visual Options Tab), Figure 8, consists of
three checkboxes, which relate to the visual preferences of the
user. More precisely the user may choose or not, to view the
vehicle’s trajectory, the known obstacles around the vehicle,
and the velocity/collision probabilities plots.

The third tab (Preferences Tab), Figure 9, consists of 7
input fields where the user can define the vehicle’s
dimensions, the floor dimensions, the maximum viewing
distance of the sonar, the sample rate with which the vehicle
transmits data and the sonar angle file. The maximum viewing
distance of the sonar determines the threshold where distances
with greater value are ignored (see section III.A for more
details). The sonar angle file contains the angle that each
sonar forms from the vertical axes (φi in Figure 4). In the case
where the application is used to display the environment
around an ATRV-Mini robot, the user can use the sensor
angle file corresponding to this robot by selecting the
appropriate robot type. In other cases the user should define
the sensor angle file, which corresponds to the robot used for
his/her experiments.

Figure 7. The Input Files Tab

Figure 8. The Visual Options Tab

After defining the appropriate input files and application’s

options, the user can press the button at the bottom left corner
in order to start the mapping of the environment around the
vehicle. It should be noted that the user has the ability to save
or load his/her preferences, as well as loading default values
corresponding to the ATRV-Mini configuration.

 5

Figure 9. The Preferences Tab.

C. Main Application’s Window
The main window of the application consists of three parts

as seen in Figure 10.
At the left column three plots are visible: the first one

corresponds to the linear and angular velocities of the vehicle,
the second, to the left and right collision probabilities and the
third, to the front and back collision probabilities.

Figure 10. The main window of the REMUS application

At the top blue row the user can be informed about some

essential parameters of the application. These are input
parameters such as: the sensors’ maximum viewing distance,
the floor dimensions, the robot dimensions and the sample
rate. Apart from these values the user can also be informed
about the x, y coordinates of the vehicle, the rotational angle θ
and the linear/angular velocities.

Figure 11. Obstacles at known positions.

Figure 12. Vehicle environment mapping.

V. RESULTS

A. Test Cases of Environment Mapping
In Figures 11 and 12, a test case of the environment

mapping can be seen. The input data for this experiment was
collected using the Mobotsim 1.0 mobile robot simulator [8].
The difference between Figures 11 and 12 is the visibility of
the known obstacles (gray rectangles).

Figure 13. Environment mapping with the ATRV-Mini robot.
The maximum sonar viewing distance value was set to 3.0m

As noted earlier (in section III) our approach is simple

enough as we draw a black dot at the point where we believe
that the sonar beam stroke. It is clear in Figure 12 that the

 6

environment mapping is accurate enough and gives us a clear
picture of the obstacles around the vehicle.

Several additional experiments have also been performed,
based on input data derived from the ATRV-Mini vehicle
sonars. Results agree with those obtained using the Mobotsim
simulator. In Figure 13 the environment mapping of the
ATRV-Mini robot with 3 obstacles around it is presented. One
may observe at the left side of the figure the plots of the linear
and angular velocity and the left, right, back, and front
collision probabilities. Due to the inaccuracy of the sonars it
was also observed that “small objects”, not supposed to be
there, have been mapped – illustrated with arrows in Figure
14. However, having in mind that, as the maximum viewing
distance threshold increases the sonar error increases too, one
may avoid this phenomenon by adjusting appropriately this
threshold. The threshold value used at the environment
mapping in Figure 13 was 2.0m while in Figure 14 it was
3.0m.

B. Application’s Running Modes
The REMUS application can be used either in real time or

by supplying the required input files. In the real time mode the
application is connected directly to the ATRV-Mini robot
through UNIX sockets. Thus the user is able to view in real
time the mapping of the environment around the vehicle. In
the non-real time mode the user must supply basically the
position input file.

Figure 14. Environment mapping with the ATRV-Mini

robot. The maximum sonar viewing distance value was set to
3.0m.

VI. CONCLUSION
Although this application can already be used on its own

for experimenting and testing in robot simulations, its
combination with more sophisticated mapping algorithms
would yield better results. However, the issue of complexity is
still a factor that should be considered when we are talking

about real time results. Some future improvements include a
better user interface, more extensive tests with real robots and
more accurate sonar functionality.

REFERENCES

[1] L. Doitsidis, K. P. Valavanis, N. C. Tsourveloudis, “Fuzzy Logic Based
Autonomous Skid Steering Vehicle Navigation”, Proceedings of the
2002 IEEE International Conference on Robotics & Automation,
Washington DC, USA, pp. 2171-2177, 2002.

[2] V. Varveropoulos, “Robot Localization and Map Construction Using
Sonar Data”, The Rossum Project – http: //rossum.sourceforge.net.

[3] M. E. Jefferies, W. K. Yeap, L. Smith, D. Ferguson, “Building a Map for
Robot Navigation Using a Theory of Cognitive Maps”, Proceedings of
the IASTED International Conference on Artificial Intelligence and
Application, Marbella, Spain, pp. 348-353, 2001.

[4] J. Howell, B. R. Donald, “Practical Mobile Robot Self-Localization”,
Proceedings of the International Conference on Robotics and
Automation, San Francisco, CA, April 24-28, pp. 3485-3492, 2000.

[5] M. Matijasevic, K. P. Valavanis, D. Gracanin, I. Lovrek, “Application of
a Multi-User Distributed Virtual Environment Framework to Mobile
Robot Teleoperation over the Internet,” Machine Intelligence & Robotic
Control,” vol. 1, no.1, pp. 11–26, 1999.

[6] M. Matijasevic, D. Gracanin, K. P. Valavanis, I. Lovrek, ”A Framework
for Multi-user Distributed Virtual Environments”, IEEE Transactions on
Systems, Man, And Cybernetics—Part B: Cybernetics, vol. 32, no. 4, pp.
416–429, 2002.

[7] G2 2D graphics library. Available: http: //g2.sourceforge.net/
[8] Mobotsim 1.0, Mobile Robot Simulator, http: //www.mobotsim.com

