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Autonomous Vehicle Navigation Utilizing Electrostatic
Potential Fields and Fuzzy Logic

Nikos C. Tsourveloudis, Kimon P. Valavanis, and Timothy Hebert

Abstract—An electrostatic potential field (EPF) path planner is com-
bined with a two-layered fuzzy logic inference engine and implemented for
real-time mobile robot navigation in a 2-D dynamic environment. The en-
vironment is first mapped into a resistor network; an electrostatic poten-
tial field is then created through current injection into the network. The
path of maximum current through the network corresponds to the approx-
imately optimum path in the environment. The first layer of the fuzzy logic
inference engine performs sensor fusion from sensor readings into a fuzzy
variable, collision, providing information about possible collisions in four
directions, front, back, left, and right. The second layer guarantees collision
avoidance with dynamic obstacles while following the trajectory generated
by the electrostatic potential field. The proposed approach is experimen-
tally tested using theNomad 200mobile robot.

Index Terms—Collision avoidance, dynamic environment, fuzzy logic,
mobile robots, navigation, path planning, potential fields, sensor fusion.

I. INTRODUCTION

This paper is the natural outgrowth of recently published research
[44]. It presents a novel approach to solving the autonomous mobile
robot (AMR) navigation problem in 2-D dynamic environments, by
combining the electrostatic potential field (EPF) path planner (already
presented in [44]) with a two-layered fuzzy logic (FL) inference
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engine, operating in tandem to plan, replan, and execute a collision
free path in real-time. Tasks are performed by the object detection, lo-
calization, path planning, and collision avoidance modules, including
on-line sonar sensor-based environment map generation and trajectory
following [17].

The main idea and contribution for the proposed EPF/FL planner is
to combine “planned and reactive behavior.” Given a 2-D environment
(with initial information from potentially existing environmenta priori
maps and on-line sonar sensor data), the EPF plans the initial trajectory
and starts executing it via the motion control module (see Fig. 1). Once
the object detection module (working in parallel with the EPF) detects
through sensor readings a “high collision possibility,” it forces the mo-
tion control module to “forget” the initial EPF path, take corrective ac-
tions in terms of robot steering and robot speed to avoid the collision,
until new sensor readings dictate a “low” or “not-possible” collision
possibility (FL-reactive). Then, the motion control module takes into
account the initial trajectory as computed at this time instant by the EPF
planner. The EPF planner is reinvoked every time the environment map
is updated. An additional contribution of the proposed approach is that
it considers a complete sensor-based model of the robot environment
and makes no assumption regarding the location or trajectory of the
obstacles. In further detail, the EPF/FL planner works as follows.

Using approximate cell decomposition, the environment is first
mapped onto a resistor network allowing a current source and a current
sink to be placed at the initial and goal positions, respectively. Each
(square) cell is actually represented by a node with eight resistors
connected to the neighboring cells, unless the cell is located in the
boundary of the map in which case those resistors on the outer
edges are left open circuited. The current flow through the network
establishes a true potential field, whose negative gradient may be
followed in a “quickest descent” method to generate in real-time,
(approximately) optimal local minima free trajectories (static environ-
ments), which may be modified at each sampling instant to account
for dynamic obstacles. Thus, a completely replanned path may be
generated online.

The EPF-generated global path is combined with sonar sensor infor-
mation in a two-layer FL inference engine. The first layer of the FL
inference engine performs sensor fusion from sensor readings into the
linguistic variable collision, providing information about potentialcol-
lisions in four directionsfront, back, left, andright. The second layer
guarantees collision avoidance with dynamic obstacles while following
the trajectory generated by the potential field.

No assumptions are made on the amount of information contained
in the environmenta priori map (it may be completely empty) and
on the shape of obstacles and their velocities. Environment map res-
olution depends on the “size” of the smallest possible grid cell. The
EPF generated path complexity is linear with respect to the obstacle
edges number within the environment [44]. Implementation on No-
madic Inc.’sCognossoftware development system and theNomad 200
mobile robot platform [16] and experimental results demonstrate the
effectiveness of the individual EPF, FL, and the combined EPF/FL ap-
proaches.

A comprehensive study of the problem and a survey of techniques
used for navigational planning is given in [41], while a long list of addi-
tional references is given in [9] and [17]. Global planners may be clas-
sified into roadmaps (visibility graphs, Voronoi diagrams, freeway net,
and silhouette) [21]–[27], cell decomposition approaches (exact and
approximate) [28]–[31], and artificial potential field (APF) approaches
[4], [6]–[10], [17]–[19], [33]. The actual electrostatic potential field
[32], [36], [37] and the magnetic field [35] have been also used to solve
specific navigation problems.

1042–296X/01$10.00 © 2001 IEEE
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Fig. 1. The navigation architecture.

Approaches to fuzzy navigation in dynamic environments follow
either aclassical paradigmor a behavior-based paradigm[1]–[3],
[11]–[15], [42]. Saffiotti provides in [20] a comprehensive study to the
FL-based autonomous robot navigation problem.

The rest of the paper is organized as follows. Section II discusses the
basic ideas related to the generation of the natural potential field and
FL-controlled navigation, as well as the computational complexity of
the proposed EPF path planner. Section III discusses experimental re-
sults, while Section IV offers a comparison of the computational com-
plexities of several reviewed approaches, thus providing justifications
for the proposed solution, at least in terms of computational complexity
efficiency. Section V concludes the paper.

II. PROPOSEDMETHOD OFSOLUTION

The EPF and the two-layered FL inference engine operate in
tandem (Fig. 1). An environmentoccupancy mapis first created and
then mapped onto aresistor networkused to derive and interpret
the EPF. The EPF goal-driven navigation generates in real-time
minimum occupancy trajectories. The FL inference engine provides
a comprehensive sensor fusion approach that interprets the potential
field results in light of the current local environment situation, thus
allowing both reactive and reflexive navigation. Theobstacle detection
moduleoutputs the position and the degree of possibility with which
any collision may occur. This information is combined in themotion
control modulewith the path planneroutput. If an obstacle blocks
the planned path, a collision avoidance decision that affects the robot
heading and speed is taken.

A. The Natural Potential Field

The solution to the navigation problem may be compared to the flow
of electric current within a sheet of conducting material; a set mapping
is performed from the real environment into a discrete electric circuit
(resistance). Obstacles are mapped into a discrete resistor network.The
path of minimum resistance within the circuit maps into a path of min-
imum occupancy within the environment.The algorithm to create the
natural potential field follows three steps: 1) create anoccupancy map
of the environment; 2) create theresistor network; and 3) solve there-
sistor networkto obtain thepotential field.

Each cell is mapped onto a resistor network (Fig. 2) by replacing
each cell in the occupancy map with a set of eight resistors, each con-
nected at a central point. The only exceptions are the cells on the out-
side edge(s) and corners with five resistors and three resistors respec-
tively connected. The value of the resistors is determined by the value

(a) (b)

Fig. 2. (a) Ann-by-n node resistor network and (b) a 2-by-2 node detail.

Fig. 3. Vector representation of an EPF solution.

of the corresponding cell in the occupancy map. Since a minimum re-
sistance path in the network is followed by maximum potential drop,
reversing the mapping generates an optimal path in the environment
corresponding to a minimum occupancy path. The path always begins
at the highest potential (initial vehicle position), and ends at the lowest
potential (final destination). Hereafter, references to an optimal path
imply a path of minimum occupancy.

Formally defined, consider an environment map, which contains ob-
stacles of various shapes and sizes. The initial position of the robot is
qo and the destination point isqf . Assume a square, (always) bounded
region centered aboutqo which includesqf and can be divided into an
n � n grid, X. The grid is discretely represented by theoccupancy
matrixO, where the value of each entry is the percentage of the area
of the grid cell, occupied by obstacles of the environment map. Details
on the construction of the occupancy matrix can be found in [44]. To
determine a desired direction of travel from the EPF, a vector is associ-
ated with each cell connected to the cell containingq0 with magnitude
equal to the amount of current flowing through the specified branch. If
the resistance between the central node and all of its neighbor nodes is
equal, then the potential drop can be used in place of the current. The
sum of these vectors is then reported to be the direction of travel along
the minimum occupancy path. Fig. 3 shows the vectors created through
a solution of the resistor network. The current magnitudes along each
branch are shown at the end of the associated vector. The geometric
sum of these forces results in a single vector pointing in the direction
of the optimal path, as shown in Fig. 3. The overall path generated by
the resistor network is, in reality, “an approximation” to the real op-
timum path. Increasing the connectivity of the cells or reducing their
size (if possible) may increase the accuracy of the generated path. It
has been observed that, if the size of the square cell is lower-bounded
by the size of the real robot (56 cm bumper-to-bumper for the Nomad
200), the accuracy of the generated path is poor.

1) Interpretation of the EPF:The criterion used for determining
the path optimality is the total occupancy of the path swept by the robot
as it follows the trajectories, or the totalswept occupancy. Each square
unit of area in the environment is assigned a minimum occupancy.
Highly cluttered areas are assigned a larger occupancy value. This cri-
terion for optimality is superior to a simple distance criterion when the
algorithm is to be implemented in a real environment. A planned path,
which minimizes distance, tends to drive the robot arbitrarily close to
any obstacles between the robot and the goal point. Minimizing swept
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Fig. 4. The sonar arrangement and relative importance to collision detection.

occupancy, the EPF path planner avoids the areas close to the object,
which increase the total swept occupancy.

2) Computational Complexity of the EPF:The complexityC of the
total EPF-based solution is [44]:

C = mnM +m(4nM + 1)size2 + 3size2 + size: (1)

Removing the nonvariable terms, (1) reduces to
O((4size2)mnM)) = O(mnM) which is linear with respect to the
variables present, the number of polygons in the space,m, and the
maximum number of sides of any polygon,nM .

B. Fuzzy Logic Inference Engine

The navigation control for the AMR is generated through a two-lay-
ered FL inference engine. The first layer is primarily responsible for
obstacle detection and performs sensor data fusion from sonar sensor
readings. Each reading is represented as two different fuzzy variables:
sensor_directionandsensor_distance. The variablesensor_direction
has four different values that describe the sensor’s membership in four
cardinal relative directions:front_collision, left_collision, back_colli-
sion, and right_collision. Each of the collision values is represented
as a fuzzy variable with valuesnot_possible, possible, andhigh. The
complete local environment of the vehicle is represented in the vari-
ablecollision. Any obstacle that is close to the AMR in any direction
is represented in thecollision variable. The second layer receives the
output of the first inference, representing the immediate collision pos-
sibilities, as well as the output of the artificial potential field and the
speed of the robot as input and generates the control:change of speed
andsteering.

A mobile robot, the Nomad 200, with a ring of 16 sonar sensors
arranged at 22.5� apart, covering a full 360� circle is used for experi-
mental purposes. Every sonar sensor is fixed in its relative location to
the front of the vehicle. Therefore,sensor_directionis a function only
of the number of the sonar. Sonar S1 always belongs tofront_collision
with weight 1.0 and sonar S2 always belongs tofront_collisionwith
weight 0.8 andleft_collision0.2, as shown in Fig. 4. To simplify the
implementation,sensor_directionhas not been used but instead each
sonar has been assigned to at least one but no more than two values
of the variablecollision (e.g., sensor 2 belongs only to left and front,
sensor 5 belongs only to left, etc). The obstacle detection inference
system is shown in Fig. 5.

The rule base of the obstacle detection controller contains rules of
the following two types:

R1) IF di is LD(k) THEN cj is LC(k);
R2) IF di is LD(k) AND di�1 is LD(k) di+1 is LD(k) THEN cj is

LC(k);
wherek is the rule number,di represents the readings of sensori,
LD(k) is a linguistic value of the term setD = { Close, Near, Far}, cj
is the collision of typej (j 2 { Front, Left, Right, Back}), andLC(k) is

Fig. 5. The obstacle detection controller implementing sensor fusion.

Fig. 6. The second-layer fuzzy controller.

a linguistic value of the term setC = { Not-Possible, Possible, High}.
The whole rule base is presented in [17]. Some of the rules for the col-
lision of typej = front, are

IF d1 is CloseTHEN front collision isHigh.
IF d1 is Far AND d2 is Far AND d16 isFar THEN front collision is
Not-Possible.
IF d2 is NearTHEN front collision isPossible.
IF d1 is NearAND d2 is High AND d16 is Far THEN front collision
is Possible.
IF d1 is CloseTHEN front collision isHigh.
IF d1 is FarAND d2 is Far AND d16 is Far THEN front collision is
Not-Possible.
IF d2 is NearTHEN front collision isPossible.
IF d1 is NearAND d2 is Far AND d16 is Far THEN front collision
is Possible.

The mathematical meaning of thekth single antecedent rule (type
R1) is given as a fuzzy relationR(k) onD�C, which in the member-
ship functions domain is

�R (di; cj) = f! [�LD (di); �LC (cj)] (2)

wheref! = min for rules of Mamdani type. The membership function
of the obstacle’s position and distance from the robot is computed by
the max–min composition [43] between the sensor readings, which rep-
resent the distance from the obstacles and the fuzzy relation described
by (2). The second layer fuzzy controller, shown in Fig. 6, takes as
input the variables:collision, angle_error, andspeedand generates the
control change of speedandsteering. The potential field generates a
heading directive based upon the sum of forces approach described in
the previous section. The heading relative to the current heading of the
AMR is given as theangle_error�. In most surveyed approaches, this
angle represents the angle to the goal point. In this case, it represents the
angle in which the vehicle should point in order to follow the desired
path to the goal point. Since the desired heading given by the poten-
tial field already considers some reactive navigation, the second-layer
fuzzy inference should implement thesteeringnecessary to reduce the
angle_errorto zero, only changing the desired heading if collision in
the vicinity of the desired path ispossible.
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TABLE I
PART OF THE RULE BASE OF THEMOTION CONTROL MODULE

Goal-directed behaviors are controlled through the steering
angle_error variable. The potential field generates the best path to
achieve the goal position. Reaction-directed behaviors are controlled
through analysis of the collision of the current situation. For example,
IF collision is front possibleAND speedis normalTHEN change of speed
is decelerate slow. A similar rule, which examines theangle_erroras
well as all values ofcollision, generates the controlsteering.

The rules of the second fuzzy module can be described compactly
as follows.

IF cj is LC(k) AND � is L�(k) AND v is LV (k) THEN s is LS(k)

AND dv is LDV (k)

wherek is the rule number,cj is collision of typej, i.e., the output
of the obstacle detection module,� is the steering angle error,v is the
speed of the robot,s is the steering angle correction,dv is the change of
speed, andLC(k),L�(k), andLV (k)LS(k)LDV (k) are the linguistic
values ofcj , �, v, s, anddv, respectively.AND = min in all rules. The
steering angle error� is computed by continuously comparing the de-
sired steering angle,�desired, i.e., the angle that guides the robot to the
target point given, with the actual steering angle,�actual. The steering
error is important when the robot detects no collision on the target path.
In case of possible collision, the information about the error� becomes
of less importance and the rules that contain such information are firing
with smaller strength than the rules which perform collision avoidance.
The generic mathematical expression of thekth navigation rule is

�R (cj ; �; v; s; dv)

= min [�LC (cj); �L� (�);

�LV (v); �LS (s); �LdV (dv)] : (3)

The overall navigation output is given by the max–min composition
[43] and in particular is

�
�

N(s; dv)

= max min
c ; �; v

[��AND(cj; �; v); �R(cj ; �; v; s; dv); ] (4)

where

�R(cj ; �; v; s; dv) =

K

k=1

�R (cj ; �; v; s; dv)

and��AND(cj; �; v) is the minimum of the fuzzified sonar readings.
The navigation action dictates change in robot speed and/or steering
correction and it comes out from a defuzzification formula, which cal-

culates the center of the area covered by the membership function com-
puted from (4). Part of the rule base is shown in Table I.

III. RESULTS AND COMPARISONS

The proposed navigation system has been implemented on the
Nomad 200 robot using theCognosdevelopment software package
that provides a communication link with the actual mobile robot [16].
Matlab’s stand-alone fuzzy inference engine has been used to obtain
the results of the fuzzy system bypassing the FL toolbox Graphical
User Interface (GUI), thus greatly increasing the simulation processing
speed. Simulation results resemble experimental results as explicitly
shown in [17] for several case studies. The robot sensor readings are
loaded as inputs into the first layer of the fuzzy inference engine.
The results of the first inference are concatenated with the vehicle
speed and angle error to form the input vector to the second-layer
fuzzy inference engine. The results of this engine are utilized to issue
commands to the mobile platform. The translational velocity and
the change in heading of the mobile platform are controlled. In all
graphs, distance is measured in meters and speed in cm/sec. Collision
possibility 1 means that the robot will hit the obstacle, while 0 means
that there are no obstacles within the sonar range.

A. Simulated Dynamic Environment

A case of a simulated dynamic environment with hidden obstacle is
shown in Figs. 7–9 to provide the clearest justification for an online
global path planner. The motion of the obstacle begins when the robot
reaches point A, and it slides into its final location. It is assumed that
the EPF path planner has complete knowledge of the dynamic object,
including its velocity vector. This allows the robot to completely avoid
the “blocked” area. Complete knowledge of the environment is unlikely
in dynamic situations, making this particular behavior more of an ideal
than a reality and not suitable in rapidly changing environments.

In the FL approach shown in Fig. 8, the robot has no prior knowl-
edge of the environment. As the robot reaches point A and turns along
its path to the final goal, the obstacle slides down blocking the path.
The robot does not detect the blocking obstacle until it reaches point
B at which time it turns to the right—the side with the lowest collision
possibility. Since the goal is now to the left of the robot, it continues to
track in a counterclockwise direction along the object until its path is
blocked by the obstacle at point C. After turning around at point C the
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Fig. 7. Simulated dynamic environment test case: the EPF approach.

Fig. 8. Simulated dynamic environment test case: the EPF approach.

Fig. 9. Simulated dynamic environment test case: the combined EPF/FL approach.

goal is again to the right of the robot. The robot now moves clockwise
around the object through points D and E to the final goal.

Fig. 9 shows the combined EPF/FL approaches and demonstrates
its advantage. After the object blocks the robot’s path, the robot turns

to the right toward the side of smallest collision. After this, the EPF
planner redirects the robot downwards instead of allowing the robot to
continue to track around the obstacle. Following the EPF directives, the
robot moves through point C to the final goal.
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Fig. 10. Experimental test case for the EPF approach.

Fig. 11. Experimental test case for the FL approach.

B. Experimental Results

Real-time experimental results have been obtained using the Nomad
200 in a laboratory environment. The room is a clean environment with
rectangular obstacles and measures approximately 7.6 m by 3.8 m. The
grid size used to calculate the EPF based path was set to be 13� 13
giving a sampling rate of approximately 1 s.

A grid size of 11� 11 reduces the sampling rate to approximately
0.65 s. The objects were placed in the room, their position measured,
and the result placed in a map, which can be viewed by theCognos
software package. The robot is localized within the room before each
test run. The position of the robot is recorded at regular time intervals
and the subsequent path is displayed through theCognos’sGUI. During
the test executions, all programs were run, under theLinux operating
system, directly on the main processor of the robot, a Pentium 133. A
test case is presented in Figs. 10–12.

During experimentation we compared the navigation results using
theCognossimulation package and the Nomad 200 robot for a variety
of test cases. For both simulated and real-time results, the combined
EPF/FL navigation approach has been used. The initial and final po-
sitions were the same with a single intermediate goal point. The path
generated in both simulations and real-time tests is seen to be the same;
however, the performance of the simulation and the real robot is dif-
ferent. The simulation has a faster cycle time for the iterations of the
EPF/FL approach. This allows the robot to follow the smoother path.

The reactions of the robot in the simulation are also different from the
real robot. For instance, once a speed command is given to the real
robot, the set point is obtained over a period of time. In the simulation,
the speed set point is almost immediately achieved.

C. Discussion

The simulation and experimental results show that the pure FL im-
plementation provided very good reaction to the presence of static and
dynamic obstacles within the robot’s immediate environment. The EPF
approach provided well-planned paths that (sometimes) brought the
robot very close to edges of obstacles; however, the EPF path planner
was sometimes very slow to react to the presence of unknown moving
obstacles. The combined EPF/FL approach allowed the potential field
to plan the paths and allowed the fuzzy inference to implement the paths
while avoiding collision with all obstacles. The combined EPF/FL ap-
proach benefits from the advantages of both approaches.

The combined EPF/FL approach finished first in about 80% of the
test situations. The EPF approach finished first in 10% of the test cases
and second in 20% of the test cases, providing the shortest path distance
in 60% of the test cases. In no test case did the approach that provided
the shortest distance path finish first, as detailed in [17].

Considering a dynamic environment, the EPF solution usually fin-
ishes the path later than the other two approaches. Two different speed
control laws are implemented among the three different approaches.
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Fig. 12. Experimental test case for the EPF/FL approach.

The FL inference and the combined EPF/FL approach utilize the fuzzy
rule base to generate the speed control. The potential field implemen-
tation does not have access to the fuzzy inference, and thus a different
control must be utilized. It was realized early in the experimentation
that the potential field reacts more slowly to moving objects that may
collide with the robot. Thus, to help avoid the objects, the maximum
speed and the average speed of the robot is much more restricted than
in the pure fuzzy and combined EPF/FL cases.

The presented fuzzy motion control inference uses only the desired
change to the heading, thus resembling a classical error proportional
controller. In the test cases presented, a sinusoidal-like path is observed
as the robot moves through otherwise straight path segments. This
behavior resembles the behavior of a proportional-to-error P-type
controller under the influence of a rapidly changing set point. The
overall performance of the combined EFP/FL approach may be en-
hanced through the addition of one more input which is the derivative
of the change of the setpoint. This makes the inference resemble a
proportional-derivative PD-type controller and may allow the EPF
setpoints to be attained faster with a resulting smoother path.

In all tests, we have used fuzzy inference systems of the so-called
Mamdani-type. The membership functions are subjectively specified
in an ad hocmanner from observation and experience and tuned by
trial-and-error, since there is no analytical method (for the Mam-
dani-type inference) that guarantees optimal selection. If one uses
model-based inference (such the Takagi–Sugeno [43] representation),
then a variety of (gradient-based) methods for the determination of the
memberships can be employed. Indeed, there are several approaches
in the literature that use neural nets, genetic algorithms, neuro-fuzzy
methods, etc., to fine-tune the membership functions. However, in
our view, these methodologies have a significant drawback when
used for the collision-free navigation problem. They do improve the
performance of the inference, but only for known environments for
which some kind of training data are available. In other words, they do
not provide a robust motion behavior capable of navigating the vehicle
in unknown/dynamic environments, where the FL is actually needed.

IV. COMPUTATIONAL COMPLEXITY COMPARISONS

Robot motion planning computational complexity results strongly
suggest that the complexity of path planning increases exponentially
with the dimension of the configuration space [4], [34], [38]–[40].
Table II summarizes the computational complexities of several
roadmap and cell decomposition approaches and of the potential
panel-based path planning method introduced by Zhang and Valavanis
[9], [18], [19].

TABLE II
COMPARISON OFCOMPUTATIONAL COMPLEXITIES OFDIFFERENTAPPROACHES

The comparison of the different approaches is in terms ofnc, the
total number of corners of all obstacles,ne, the total number of edges
of all obstacles,nt, the total number of edges and vertices of all ob-
stacles,ne1 the total number of edges of a polygonal object,ne2, the
total number of edges of all polygonal obstacles,m, the total number
of obstacles in the workspace, andk, the total number of the step dis-
placements on a generated path. A complete discussion may be found
in [9] and [17], along with extensions covering 3-D environments.

V. CONCLUSION

Several advantages of the natural potential field approach are quickly
observed over other potential field solutions.

1) An analysis of traditional electrostatic theory reveals that in a
network composed solely of resistors with positive resistance
values, the system of equations that describe the network and
are based on Kirchhoff’s Laws is linearly independent.

2) The collision-free paths generated from the electrostatic poten-
tial field, necessarily lead to the goal position. Further, local
minima are not generated within the field, and stagnation points
within the field do not exist.

3) The electrostatic potential field approach selected generates an
optimal, minimum occupancy path.
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4) The proposed solution accomplishes real-time path generation.
The fuzzy logic controller interprets the potential path and per-
forms sensor fusion in order to increase the ability of the vehicle
to react to dynamic obstacles.

In general, the EPF path planner performs best in cluttered environ-
ments. If the potential field has several obstacles grouped in one loca-
tion of the grid, the large open area of the network tends to pull the
path further away from the obstacle(s) and into the open area. Rela-
tively thin obstacles do not provide the EPF with enough information
to consistently generate collision-free paths. The FL controller incor-
porates omni-directional sensing, which allows the vehicle to detect
and react quickly to any obstacle in the environment, regardless of the
placement of the obstacle relative to the robot.
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