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planner. The EPF planner is reinvoked every time the environment map
is updated. An additional contribution of the proposed approach is that
it considers a complete sensor-based model of the robot environment
and makes no assumption regarding the location or trajectory of the
obstacles. In further detail, the EPF/FL planner works as follows.
Using approximate cell decomposition, the environment is first
mapped onto a resistor network allowing a current source and a current
sink to be placed at the initial and goal positions, respectively. Each
Nikos C. Tsourveloudis, Kimon P. Valavanis, and Timothy Hebert (Square) cell is actually represented by a node with eight resistors
connected to the neighboring cells, unless the cell is located in the
boundary of the map in which case those resistors on the outer
Abstract—An electrostatic potential field (EPF) path planner is com- edges are left open circuited. The current flow through the network
bined with a two-layered fuzzy logic inference engine and implemented for establishes a true potential field, whose negative gradient may be
real-time mobile robot navigation in a 2-D dynamic environment. The en- ¢ o in a “quickest descent” method to generate in real-time,

vironment is first mapped into a resistor network; an electrostatic poten- . . - . . . .
tial field is then created through current injection into the network. The ~ (&PProximately) optimal local minima free trajectories (static environ-

path of maximum current through the network corresponds to the approx- ments), which may be modified at each sampling instant to account
imately optimum path in the environment. The first layer of the fuzzy logic ~ for dynamic obstacles. Thus, a completely replanned path may be
inference engine performs sensor fusion from sensor readings into a fuzzy generated online.

variable, collision, providing information about possible collisions in four . . . .
directions, front, back left, and right. The second layer guarantees collision The EPF-generated global path is combined with sonar sensor infor-

avoidance with dynamic obstacles while following the trajectory generated Mation in a two-layer FL inference engine. The first layer of the FL
by the electrostatic potential field. The proposed approach is experimen- inference engine performs sensor fusion from sensor readings into the

tally tested using theNomad 200mobile robot. linguistic variable collision, providing information about potential-

Index Terms—Collision avoidance, dynamic environment, fuzzy logic, lisionsin four directionsfront, back left, andright. The second layer
mobile robots, navigation, path planning, potential fields, sensor fusion.  guarantees collision avoidance with dynamic obstacles while following
the trajectory generated by the potential field.

No assumptions are made on the amount of information contained
in the environment priori map (it may be completely empty) and

This paper is the natural outgrowth of recently published researeh the shape of obstacles and their velocities. Environment map res-
[44]. It presents a novel approach to solving the autonomous mobilkition depends on the “size” of the smallest possible grid cell. The
robot (AMR) navigation problem in 2-D dynamic environments, byePF generated path complexity is linear with respect to the obstacle
combining the electrostatic potential field (EPF) path planner (alreagglges number within the environment [44]. Implementation on No-
presented in [44]) with a two-layered fuzzy logic (FL) inferencégnadic Inc.’sCognossoftware development system and Memad 200

mobile robot platform [16] and experimental results demonstrate the
effectiveness of the individual EPF, FL, and the combined EPF/FL ap-
proaches.
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Approaches to fuzzy navigation in dynamic environments follow 3.8
either aclassical paradigmor a behavior-based paradigrii]-[3],
[11]-[15], [42]. Saffiotti provides in [20] a comprehensive study to th
FL-based autonomous robot navigation problem.

The rest of the paper is organized as follows. Section Il discusses @ighe corresponding cell in the occupancy map. Since a minimum re-
basic ideas related to the generation of the natural potential field agigtance path in the network is followed by maximum potential drop,
FL-controlled navigation, as well as the computational complexity ¢eversing the mapping generates an optimal path in the environment
the proposed EPF path planner. Section IIl discusses experimentalo@responding to a minimum occupancy path. The path always begins
sults, while Section IV offers a comparison of the computational cordit the highest potential (initial vehicle position), and ends at the lowest
plexities of several reviewed approaches, thus providing justificatiopgtential (final destination). Hereafter, references to an optimal path

for the proposed solution, at least in terms of computational complexifyPly @ path of minimum occupancy.
efficiency. Section V concludes the paper. Formally defined, consider an environment map, which contains ob-

stacles of various shapes and sizes. The initial position of the robot is
¢. and the destination point ig.. Assume a square, (always) bounded
Il. PROPOSEDMETHOD OF SOLUTION region centered abogt which includes;; and can be divided into an

The EPF and the two-layered FL inference engine operate /in* 7 9rid, X". The grid is discretely represented by ibecupancy
tandem (Fig. 1). An environmericcupancy majs first created and matrix O, where the value of each entry is the percentage of the area

then mapped onto gsistor networkused to derive and interpret of the grid cell, occupied by obstacles of the environment map. Details

the EPF. The EPF goal-driven navigation generates in real-tirfi8 the construction of the occupancy matrix can be found in [44]. To
minimum occupancy trajectories. The FL inference engine providggtermlne a desired direction of travel from the EPF, a vector is associ-

a comprehensive sensor fusion approach that interprets the pote/figfl With each cell connected to the cell containipgvith magnitude
field results in light of the current local environment situation, thu§du@l to the amount of current flowing through the specified branch. If

allowing both reactive and reflexive navigation. Totestacle detection the resistance between the central node and all of its neighbor nodes is

moduleoutputs the position and the degree of possibility with whicRdual, then the potential drop can be used in place of the current. The
any collision may occur. This information is combined in thetion SUM of these vectors is then reported to be the direction of travel along

control modulewith the path planneroutput. If an obstacle blocks e minimum occupancy path. Fig. 3 shows the vectors created through

the planned path, a collision avoidance decision that affects the roBgtolution of the resistor network. The current magnitudes along each
heading and speed is taken. branch are shown at the end of the associated vector. The geometric

sum of these forces results in a single vector pointing in the direction
. . of the optimal path, as shown in Fig. 3. The overall path generated b
A. The Natural Potential Field the resigtor neFt)work is, in reality, “gan approximatior?" to ?he real op-y
The solution to the navigation problem may be compared to the flawnmum path. Increasing the connectivity of the cells or reducing their
of electric current within a sheet of conducting material; a set mappisge (if possible) may increase the accuracy of the generated path. It
is performed from the real environment into a discrete electric circuias been observed that, if the size of the square cell is lower-bounded
(resistance). Obstacles are mapped into a discrete resistor netlwerk.by the size of the real robot (56 cm bumper-to-bumper for the Nomad
path of minimum resistance within the circuit maps into a path of mii200), the accuracy of the generated path is poor.
imum occupancy within the environmefihe algorithm to create the 1) Interpretation of the EPF:The criterion used for determining
natural potential field follows three steps: 1) createacupancy map the path optimality is the total occupancy of the path swept by the robot
of the environment; 2) create tiesistor networkand 3) solve thee-  as it follows the trajectories, or the to®klept occupancyach square
sistor networkto obtain thepotential field unit of area in the environment is assigned a minimum occupancy.
Each cell is mapped onto a resistor network (Fig. 2) by replacingjghly cluttered areas are assigned a larger occupancy value. This cri-
each cell in the occupancy map with a set of eight resistors, each cterion for optimality is superior to a simple distance criterion when the
nected at a central point. The only exceptions are the cells on the altjorithm is to be implemented in a real environment. A planned path,
side edge(s) and corners with five resistors and three resistors respgdeh minimizes distance, tends to drive the robot arbitrarily close to
tively connected. The value of the resistors is determined by the valugy obstacles between the robot and the goal point. Minimizing swept

gig. 3. Vector representation of an EPF solution.
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Removing the nonvariable terms, (1) reduces t
O((4si262)m71,1\,1)) = O(mnys) which is linear with respect to the Hirtiva Cunirul Mesdule
variables present, the number of polygons in the spaceand the
maximum number of sides of any polygom,. Fig. 6. The second-layer fuzzy controller.
B. Fuzzy Logic Inference Engine a linguistic value of the term sé€t = { Not-PossiblePossible High}.

The navigation control for the AMR is generated through a two-layrhe whole rule base is presented in [17]. Some of the rules for the col-
ered FL inference engine. The first layer is primarily responsible fdision of typej = front, are
obstacle detection and performs sensor data fusion from sonar sensor IF d, is CloseTHEN front collision is High.
readings. Each reading is represented as two different fuzzy variables: |F d, is Far AND d» is Far AND d ¢ is Far THEN front collision is

sensor_directiorand sensor_distanceThe variablesensor_direction Not-Possible

has four different values that describe the sensor's membership in four | d- is Near THEN front collision is Possible

cardinal relative directiongront_collision left_collision back_colli- IF d1 is NearAND d; is High AND d;¢ is Far THEN front collision
sion, andright_collision Each of the collision values is represented s Possible

as a fuzzy variable with value®t_possiblepossible andhigh. The IF dy is CloseTHEN front collision isHigh.

complete local environment of the vehicle is represented in the vari- IF d, is FaranD ds is Far AND d,¢ is Far THEN front collision is

ablecollision. Any obstacle that is close to the AMR in any direction Not-Possible

is represented in theollision variable. The second layer receives the  |F d, is NearTHEN front collision is Possible

output of the first inference, representing the immediate collision pos- IF d; is NearaND d. is Far AND d1¢ is Far THEN front collision

sibilities, as well as the output of the artificial potential field and the is Possible

speed of the robot as input and generates the cowntiahge of speed  The mathematical meaning of tik¢h single antecedent rule (type

andsteering R1) is given as a fuzzy relatioR'*) on D x ', which in the member-
A mobile robot, the Nomad 200, with a ring of 16 sonar sensoghip functions domain is

arranged at 22%apart, covering a full 360circle is used for experi- )

mental purposes. Every sonar sensor is fixed in its relative location to Hpan (dis ¢j) = f— (1, pay (di)s ppem (e5)] @

the front of the vehicle. Thereforeensor_directioris a function. qnly wheref_ = min for rules of Mamdani type. The membership function

of the number of the sonar. Sonar S1 always belongei_collision ¢ (e opstacle’s position and distance from the robot is computed by
with weight 1.0 and sonar S2 always belongdrant_collisionwith  yhe may_min composition [43] between the sensor readings, which rep-
weight 0.8 andeft_collision0.2, as shown in Fig. 4. To simplify the \oqent the distance from the obstacles and the fuzzy relation described
|mplementat|onsenspr_dlrectlomas not been used but instead eacBy (2). The second layer fuzzy controller, shown in Fig. 6, takes as
sonar has been assigned to at least one but no more than two Vaji the variablescollision, angle_error andspeecand generates the

of the variablecollision (e.g., sensor 2 belongs only to left and fronteqn) change of speedndsteering The potential field generates a
sensor 5 belongs only to left, etc). The obstacle detection inferenge, jing directive based upon the sum of forces approach described in

system is shown in Fig. 5. ) _ the previous section. The heading relative to the current heading of the
The rule base of the obstacle detection controller contains rules Qfir is given as thangle_erroré. In most surveyed approaches, this
the following two types: angle represents the angle to the goal point. In this case, it represents the
R1) IF d; is LD THEN ¢; is LC'); , angle in which the vehicle should point in order to follow the desired
R2) IF d; is LD AND d; 1 is LD™ d; 11 is LD THEN ¢; is  path to the goal point. Since the desired heading given by the poten-
LC®; tial field already considers some reactive navigation, the second-layer

wherek is the rule numberd; represents the readings of senspr fuzzy inference should implement tegeeringnecessary to reduce the
LD™ is a linguistic value of the term s& = { Close Near, Far}, ¢;  angle_errorto zero, only changing the desired heading if collision in
is the collision of type (j € {Front, Left, Right, Bad), and LC™*) is  the vicinity of the desired path jsossible
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TABLE |
PART OF THE RULE BASE OF THEMOTION CONTROL MODULE
INPUT Variables OUTPUT Variables
Collision Speed Steering | Change-of- | Steering
Front Left Back Right Angle Error Speed Coffeiﬁon

N-P N-P N-P N-P Low RB NC TLF
N-P N-P N-P N-P Normal R NC TL
N-P N-P N-P N-P Normal Zero ACC-F NC
N-P High N-P N-P High LS DEC-SL TRS
N-P N-P N-P High Low LB NC TRS
High High N-P N-P Low Zero NC TRF
High N-P High High Normal RS DEC-F TLF
N-P High High N-P Normal R DEC-SL NC
N-P High N-P High High RB DEC-SL NC
High High High N-P High Zero DEC-F TRF
_High N-P High N-P Low LS NC TR

Goal-directed behaviors are controlled through the steeringlates the center of the area covered by the membership function com-
angle_errorvariable. The potential field generates the best path puted from (4). Part of the rule base is shown in Table I.
achieve the goal position. Reaction-directed behaviors are controlled
through analysis of the collision of the current situation. For example, IIl. RESULTS AND COMPARISONS

IF collisionis front possibleaND speeds normalTHEN change of speed o )
is decelerate slowA similar rule, which examines thengle_erroras The proposed navigation system has been implemented on the

well as all values otollision, generates the contrsteering Nomad 200 robot using th€ognosdevelopment software package
The rules of the second fuzzy module can be described compa&ﬂ?t provides a communication link with the actual mobile robot [16].
as follows. Matlab’s stand-alone fuzzy inference engine has been used to obtain
e is IO AND 8 is L0 AND v is LT7F) THEN s is Lg(®)  the results of the fuzzy system bypassing the FL toolbox Graphical
AN[; dv is LDV ®) User Interface (GUI), thus greatly increasing the simulation processing

speed. Simulation results resemble experimental results as explicitly
of the obstacle detection moduleis the steering angle error,is the shown in [17] for several case studies. The robot sensor readings are

speed of the robot, is the steering angle correctiah; is the change of !ﬁ?decj a“T‘t Inpfu:E 'TO tthef first layer of the IUZZ)t/ g]fertehniﬁ engkllr)el.
speed, and C*), LO®), andLV ¥ LS® LDV are the linguistic e results of the first inference are concatenated wi e vehicle

values of¢;, 6, v, s, anddv, respectivelyAND = min in all rules. The Speed. and angle error o form the inpgt vect.or to the.second-.layer
steering angle errat is computed by continuously comparing the detuzzy inference engine. The results of this engine are utilized _to issue
sired steering anglé,.si.-d, i.€., the angle that guides the robot to thgommands t'o the r_nobﬂe platform_. The transiational velocity and
target point given, with the actual steering anglg,..... The steering the change in hgadlng of the.moblle platform are .controlled. In fil!
error is important when the robot detects no collision on the target pa@Phs. distance is measured in meters and speed in cm/sec. Collision
In case of possible collision, the information about the effoecomes possibility 1 means that the rgbgt will hit the obstacle, while 0 means
of less importance and the rules that contain such information are firii{tjt there are no obstacles within the sonar range.
with smaller strength than the rules which perform collision avoidance. ) )
The generic mathematical expression of ttke navigation rule is A. Simulated Dynamic Environment

A case of a simulated dynamic environment with hidden obstacle is
shown in Figs. 7-9 to provide the clearest justification for an online

wherek is the rule numberg; is collision of typey, i.e., the output

(¢, 8, v, s, dv)

=min [y o (c)): trew(8), global path planner. The motion of the obstacle begins when the robot
Bry ey (0)s i sy (8), pp gy (dv)]. (8) reaches point A, and it slides into its final location. It is assumed that
The overall navigation output is given by the max—min compositio_tr}?e EPF Path plaqner has Com_plete knowledge of the dynamic Obl_eCt*
[43] and in particular is including its velocity vector. This allows the robot t(_) complet_ely ay0|d
the “blocked” area. Complete knowledge of the environment is unlikely
fin (s, dv) in dynamic situations, making this particular behavior more of an ideal
=max min [phyp(cs, 8, v), urlcj, 8, v, s, dv),] (4) than areality and not suitable in rapidly changing environments.
A In the FL approach shown in Fig. 8, the robot has no prior knowl-
where edge of the environment. As the robot reaches point A and turns along
K its path to the final goal, the obstacle slides down blocking the path.
pr(ci, 8, v, s, dv) = U L (e, 8, v, s, dv) The robot does not detect the blocking obstacle until it reaches point
k=1 B at which time it turns to the right—the side with the lowest collision

andu’xp(cj, 8, v) is the minimum of the fuzzified sonar readings possibility. Since the goal is now to the left of the robot, it continues to
The navigation action dictates change in robot speed and/or steettiragk in a counterclockwise direction along the object until its path is
correction and it comes out from a defuzzification formula, which cablocked by the obstacle at point C. After turning around at point C the
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Fig. 9. Simulated dynamic environment test case: the combined EPF/FL approach.

goal is again to the right of the robot. The robot now moves clockwige the right toward the side of smallest collision. After this, the EPF
around the object through points D and E to the final goal. planner redirects the robot downwards instead of allowing the robot to

Fig. 9 shows the combined EPF/FL approaches and demonstratestinue to track around the obstacle. Following the EPF directives, the
its advantage. After the object blocks the robot’s path, the robot tumabot moves through point C to the final goal.
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B. Experimental Results The reactions of the robot in the simulation are also different from the

Real-time experimental results have been obtained using the Norig@l robot. For instance, once a speed command is given to the real
200 in a laboratory environment. The room is a clean environment Wﬁﬂbm’ the set pomt '_S obtalneq over a_ period of.t|me. In the simulation,
rectangular obstacles and measures approximately 7.6 m by 3.8 m. ifeSPeed set point is almost immediately achieved.
grid size used to calculate the EPF based path was set to kelB3
giving a sampling rate of approximately 1 s.

A grid size of 11x 11 reduces the sampling rate to approximately The simulation and experimental results show that the pure FL im-
0.65 s. The objects were placed in the room, their position measurplmentation provided very good reaction to the presence of static and
and the result placed in a map, which can be viewed byCbgnos dynamic obstacles within the robot’s immediate environment. The EPF
software package. The robot is localized within the room before eaapproach provided well-planned paths that (sometimes) brought the
test run. The position of the robot is recorded at regular time intervatsbot very close to edges of obstacles; however, the EPF path planner
and the subsequent path is displayed througRtgnos’'sGUI. During  was sometimes very slow to react to the presence of unknown moving
the test executions, all programs were run, undeiLthax operating obstacles. The combined EPF/FL approach allowed the potential field
system, directly on the main processor of the robot, a Pentium 133t@plan the paths and allowed the fuzzy inference to implement the paths
test case is presented in Figs. 10-12. while avoiding collision with all obstacles. The combined EPF/FL ap-

During experimentation we compared the navigation results usipgoach benefits from the advantages of both approaches.
the Cognossimulation package and the Nomad 200 robot for a variety The combined EPF/FL approach finished first in about 80% of the
of test cases. For both simulated and real-time results, the combinest situations. The EPF approach finished first in 10% of the test cases
EPF/FL navigation approach has been used. The initial and final @oid second in 20% of the test cases, providing the shortest path distance
sitions were the same with a single intermediate goal point. The path60% of the test cases. In no test case did the approach that provided
generated in both simulations and real-time tests is seen to be the sah®shortest distance path finish first, as detailed in [17].
however, the performance of the simulation and the real robot is dif-Considering a dynamic environment, the EPF solution usually fin-
ferent. The simulation has a faster cycle time for the iterations of tighes the path later than the other two approaches. Two different speed
EPF/FL approach. This allows the robot to follow the smoother patbontrol laws are implemented among the three different approaches.

C. Discussion
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The FL inference and the combined EPF/FL approach utilize the fuzzy TABLE I

rule base to generate the speed control. The potential field imp|em&QJ\/lPARISON OFCOMPUTATIONAL COMPLEXITIES OF DIFFERENTAPPROACHES
tation does not have access to the fuzzy inference, and thus a differen-
control must be utilized. It was realized early in the experimentation
that the potential field reacts more slowly to moving objects that may
collide with the robot. Thus, to help avoid the objects, the maximum
speed and the average speed of the robot is much more restricted tha

Approach Computational Complexity

O(nc’) [21][22]
Roadmap Path Planning O(n logn-+n,) [23][24]
]

in the pure fuzzy and combined EPF/FL cases. O(n(m+logn.)) [25

The presented fuzzy motion control inference uses only the desired O(m’*+nogn,) [26] [27]
change to the heading, thus resembling a classical error proportiona o) 28]
controller. In the test cases presented, a sinusoidal-like path is observe: ,
as the robot moves through otherwise straight path segments. This Cell Decomposition O(n/) (29]
behavior resembles the behavior of a proportional-to-error P-type O(ndog’n) [29]
controller under the influence of a rapidly changing set point. The O(n/logn)) [30]
overall performance of the combined EFP/FL approach may be en- O’ 1’ onen.2)) [31]
hanced through the addition of one more input which is the derivative
of the change of the setpoint. This makes the inference resemble ¢ Potential Panel-Based Path | O(m’+km) (9]

proportional-derivative PD-type controller and may allow the EPF Ylanning Method
setpoints to be attained faster with a resulting smoother path.

In all tests, we have used fuzzy inference systems of the so-called EPF Method O(mnyy) [17] [44]
Mamdani-type. The membership functions are subjectively specified
in anad hocmanner from observation and experience and tuned by
trial-and-error, since there is no analytical method (for the Mam- The comparison of the different approaches is in terms gfthe
dani-type inference) that guarantees optimal selection. If one usegl number of corners of all obstacles,, the total number of edges
model-based inference (such the Takagi—Sugeno [43] representatighhll obstaclesy:, the total number of edges and vertices of all ob-
then a variety of (gradient-based) methods for the determination of #gcles;.; the total number of edges of a polygonal object;, the
memberships can be employed. Indeed, there are several approaghtgsnumber of edges of all polygonal obstaches,the total number
in the literature that use neural nets, genetic algorithms, neuro-fuzgyobstacles in the workspace, ahdthe total number of the step dis-
methods, etc., to fine-tune the membership functions. However, gtacements on a generated path. A complete discussion may be found

our view, these methodologies have a significant drawback whgn[9] and [17], along with extensions covering 3-D environments.

used for the collision-free navigation problem. They do improve the

performance of the inference, but only for known environments for V. CONCLUSION

which some kind of training data are available. In other words, they do o )

not provide a robust motion behavior capable of navigating the vehicleS€Veral advantages of the natural potential field approach are quickly

in unknown/dynamic environments, where the FL is actually neede@PServed over other potential field solutions.

1) An analysis of traditional electrostatic theory reveals that in a
network composed solely of resistors with positive resistance
values, the system of equations that describe the network and
Robot motion planning computational complexity results strongly are based on Kirchhoff's Laws is linearly independent.

suggest that the complexity of path planning increases exponentially2) The collision-free paths generated from the electrostatic poten-

with the dimension of the configuration space [4], [34], [38]-[40]. tial field, necessarily lead to the goal position. Further, local

Table Il summarizes the computational complexities of several  minima are not generated within the field, and stagnation points

roadmap and cell decomposition approaches and of the potential within the field do not exist.

panel-based path planning method introduced by Zhang and Valavani8) The electrostatic potential field approach selected generates an

[9], [18], [19]. optimal, minimum occupancy path.

IV. COMPUTATIONAL COMPLEXITY COMPARISONS



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 4, AUGUST 2001 497

4) The proposed solution accomplishes real-time path generatiof22]
The fuzzy logic controller interprets the potential path and per-
forms sensor fusion in order to increase the ability of the vehicld?3]
to react to dynamic obstacles.

E. Welzl, “Constructing the visibility graph for n line segments in
O(N?) time,” Inform. Processing Lettvol. 20, pp. 167-171, 1985.

M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithmsJ. ACM vol. 34, no. 3, pp. 596-615,
1987.

(24]

In general, the EPF path planner performs best in cluttered environ-

ments. If the potential field has several obstacles grouped in one loca;

5]

tion of the grid, the large open area of the network tends to pull th
path further away from the obstacle(s) and into the open area. Relgpe]
tively thin obstacles do not provide the EPF with enough information

to consistently generate collision-free paths. The FL controller incorl27]
porates omni-directional sensing, which allows the vehicle to detec[128]
and react quickly to any obstacle in the environment, regardless of the
placement of the obstacle relative to the robot.
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