

An Empirical Study for Fitness Function Selection in Fuzzy Logic Controllers for
Mobile Robot Navigation

Lefteris Doitsidis & Nikos C. Tsourveloudis

Intelligent Systems & Robotics Laboratory
Department of Production Engineering & Management

Technical University of Crete
University Campus, Chania GR – 73100

GREECE
{ldoitsidis,nikost}@dpem.tuc.gr

Abstract – Fuzzy logic is widely used for mobile robot
navigation. The main draw back of this approach is the ad hoc
design of the controllers used. A popular method for the
optimization of fuzzy logic controllers for the navigation of
mobile robots is the use of genetic algorithms. An issue, in this
procedure is the selection of the fitness function for the
improvement of the behavior of a pre-designed controller. We
analyze the factors that influence the evolution of the fuzzy
controller based on the fitness function used and present some
preliminary results. In order to validate our approach a test bed
has been developed based in a low cost robot.

I. INTRODUCTION

Fuzzy logic techniques are commonly used for navigation
of different types of robot vehicles [1]. The popularity of the
use of fuzzy logic is based on the fact that it can cope with
the uncertainty of the sensors and the environment really
well. By using it, the robot vehicles are able to move in
known or unknown environments, using control laws that
derive from a fuzzy rule base. This base is consisted from a
set of predefined IF-THEN rules, which remain constant as
far as it concerns their structure during the operation of the
robot. These rules as long as the membership functions of the
input and output variables are usually designed ad hoc by
human experts.

Several researchers have used fuzzy logic for the
navigation of a mobile robot. In [2] a layer goal oriented
motion planning strategy using fuzzy logic controllers has
been proposed, which uses sub-goals in order to move in a
specific target point. Another approach is presented in [3],
where the authors propose a control system consisted of
fuzzy behaviors for the control of an indoor mobile robot. All
the behaviors are implemented as Mamdani fuzzy controllers
except one which is implemented as adaptive neuro-fuzzy. In
[4] a combined approach of fuzzy and electrostatic potential
fields is presented that assures navigation and obstacle
avoidance.

The main draw back of the approaches presented is that
the design of the fuzzy logic controller is relied mainly on the
experience of the designer. In order to overcome this
problem several researchers have proposed tuning of the
fuzzy logic controller based on learning methods [5] and
evolutionary algorithms [6] - [11], in an attempt to improve
the performance and the behavior of the robot.

In [6] a fuzzy logic controller for a khepera robot in a

simulated environment was evolved using a genetic
algorithm and the behaviors of the evolved controller were
analyzed with a state transition diagram. The robot by using
the evolved controller produces emergent behaviors by the
interaction of the fuzzy rules that were produced from the
evolution process. In [7] the authors proposed a three step
evolution process to self-organize a fuzzy logic controller.
The procedure initially tunes the output term set and rule
base, then the input membership functions and in the third
phase it tunes the output membership functions. Hargas et al.
in [8] proposed a fuzzy-genetic technique for the on-line
learning and adaptation of an intelligent robotic vehicle. In
[9] the authors present a methodology for the tunning of the
knowledge base of the fuzzy logic controller based on a
compact scheme for the genetic representation of the fuzzy
rule base. In [10] the authors present a scheme for the
evolution of the rule base of a fuzzy logic controller. The
evolution takes place in simulated robots and the evolved
controllers are tested in a khepera mobile robot. Nanayakkara
et al. in [11] present an evolutionary learning methodology
of a fuzzy behavior based controller using a multi objective
fitness function that incorporates several linguistic features.
The methodology is compared with the results that derive by
the use of a conventional evolutionary algorithm.

A main issue which is not addressed in the literature, is
related to the selection of factors of the fitness function
which is going to be used in the evolution of a fuzzy logic
controller. The majority of the fitness functions used is hand
formulated and usually task specified. This results to
controllers which depend heavily on the overall design of the
functions. An attempt to formulate a way of picking the
suitable function for a task was made by Nolfi and Floreano
in [12]. They proposed the concept of "fitness space", which
provides a framework for describing and designing fitness
functions for autonomous systems.

In this paper we will attempt to analyze the differences in
the behavior of a real robot which are produced by the
evolution of a fuzzy controller using different types of fitness
functions. These are categorized into three broad categories
and formally analyzed in section 2. We will use a genetic
algorithm with exactly the same parameters in order to
evolve the membership functions of a predefined fuzzy
controller. An analysis of the results will be presented and
the influence of different parameters in the fitness function

38681-4244-0136-4/06/$20.00 '2006 IEEE

will be identified.
The rest of the paper is organized as follows. In section 2

the main characteristics of the three different types of fitness
functions are identified and there is an analytical description
of the actual functions used. In section 3 the fuzzy logic
controller which was evolved is presented together with the
genetic algorithm used for evolution. In section 4 a custom
made robotic vehicle is presented and in section 5 the
experimental results are presented and analyzed. Finally in
section 6, issues for discussion and further research are
presented.

II. FITNESS FUNCTION CATEGORIES

The choice of the fitness function is a fundamental issue

for the evolution of the controller of a mobile robot. The
overall behavior of the robot can be affected by the form that
these functions might have. There are several types of fitness
function proposed in the literature and each one of them is
considering different factors.

These functions can be divided based on whether there is
prior knowledge of the task they want to achieve and
according to the behavior of the controller that they produce.
We would consider three types of functions which are
aggregate, behavioral and tailored fitness functions.

The term aggregate fitness describes functions that select
only for high-level success or failure to complete a task
without regard how the task was completed. The main
advantage of this type of function is that reduces the injection
of human bias in the evolution process since it’s aggregating
the evaluation of the robot’s performance in a single success/
failure term. For the evolution of complex behaviors
aggregate functions are less depended on the designer than
the behavioral and even more the tailored as they are
incorporating the knowledge of the designer and they guide
the evolution process in a desired behavior.

The term behavioral fitness describes functions which
have task-specified hand-formulated functions that measure
various aspects of a robot’s functionality. The distinctive
feature of this class of functions is that they are made only of
terms or components that select for behavioral features of a
presupposed solution to a given task.

Finally the tailored fitness functions are the ones that are
responsible of the evolution behaviors that are pre-
recognized from the designer of the function. This type of
functions combines elements from both the behavioral and
the aggregate categories. Usually in tailored functions the
aggregate terms are measuring a degree partial task
completion in a way that inserts some degree of a priori
knowledge.

In order to investigate how different types of fitness
functions are influence the evolution of a fuzzy logic
controller for a mobile robot three different fitness functions
were used.

The first fitness function used was pure aggregate function
which was measuring only how close the robot has went in a

target position comparing to its initial position. During the
evolution process the level of activation of the sensors or the
number of collisions with the obstacle wasn’t considered.
The form of the function for the individual i of the generation
j was:

3891.73
2
















=








 −

initial

initialfinal

d
dd

i ef , (1)

where, dfinal is the final distance of the robot from a
predefined target point and dinitial the initial distance of the
robot from a predefined target point.

The second fitness function used was a behavioral fitness
similar to the one used in [15] for the evolution of a discrete
time recurrent neural network. The fitness was considering
the percentage of straight motion of the vehicle, the
activation level of the sensors and the velocity in each wheel
of the vehicle. This function wasn't considering the distance
of the robot's position relative to the target position. The form
of the function for the individual i of the generation j was:

()()RLFRi aaavvmeanf
L

++= , , (2)

where, vL the velocity of the left wheel of the robot , vR of the
right and aF, aR,, aL are the activation levels of the front, right
and left sensors respectively. By the term activation level we
consider the percentage that is calculated by the division of
the actual sensor reading divided by its maximum value. The
activation level of each sensor derives from the following
equation:

rangesensor
treadingsensor

asensor max
)(_

= , (3)

where, sensor_reading(t) is the reading at the time step t of
the experiment. If the activation level is 1 then the sensor is
not having any obstacle in its field of view.

The third function used, was a tailored fitness function
which measured how close the robot has went in a target
position comparing to its initial position and the activation
level of each sensor that the robot had. The form of the
function for the individual i of the generation j was:

()RLF
d

dd

i aaaef initial

initialfinal

+++































=

−

3891.73
2

. (4)

III. DESIGN OF THE FUZZY LOGIC CONTROLLER

AND OF THE EVOLUTION PROCESS

A. Fuzzy Logic Controller

Based on previous work [14] we have designed a fuzzy
logic controller with four inputs and two outputs. The inputs
are the heading error, the distance from obstacles as it was
measured from the front sonar sensor and the distance from

3869

obstacles as it was measured from the left and the right
infrared sensors. The outputs from the controller were the
values for the movement of the left and right servos.

The inputs from the sensors are used in order to calculate
the collision possibilities in three directions, which are front,
left and right collision possibility. The heading error is
calculated from the robot’s current heading and the desired
heading.

Implementation wise the input variable heading error is
including four trapezoidal membership functions and one
triangular membership function. The input variable front
collision possibility includes three trapezoidal membership
functions and the input variables left and right collision
possibility are including two trapezoidal membership
functions each.

The value of each distance input variable di i=1,…,3
(corresponding to front, left , right area) are expressed by the
fuzzy sets Ci, Ai (corresponding to close and away) for the
left and right area and Ci, MDi, Ai (corresponding to close,
medium distance and away) for the front area. The values of
the input variable heading error, (he), are expressed by the
fuzzy sets FL, L, AH, R, FR (corresponding to far left, left,
ahead, right and far right). The outputs of the fuzzy logic
controller are the speeds of the left and the right servo motor.
The membership functions describing the fuzzy sets for each
output variable are Z, S, M, H (corresponding to zero, small,
medium and high speed).

Each fuzzy rule j is expressed as:
IF he is HEj AND d1 is Dj1 AND d2 is Dj2 AND d3 is Dj3
THEN lm is LMj AND rm is RMj
wrere j=1,…, number_of_rules, Dji is the fuzzy set for di in
the jth rule which takes the linguistic value of Ci, MDi, Ai for
i=1 (front area) and Ci, Ai for i=2,3 corresponding to the left
and right areas. HEj takes the linguistic values FL, L, AH, R,
FR and finally LMj and RMj are taking the linguistic values Z,
S, M, H.

The generic mathematical expression of the jth navigation
rule is given by:

)](),(),(),(min[),,,()()()()(rmlmdhermlmdhe jji
i

jj RMLMiDHEiR µµµµµ = .(5)

The overall navigation output is given by the max-min
composition and in particular:

)],,,(),,([minmax),(
,

rmlmdhedhermlm iRiANDdheN
i

µµµ ∗∗ = , (6)

where , ∪
J

j
iRiR rmlmdhermlmdhe i

1

),,,(),,,()(

=

= µµ .

B. Genetic Fuzzy Tunning

For the evolution of a fuzzy logic controller the
membership functions and the rule base are potentional
candidates for evolution [16]. In this approach we consider a
fixed rule base as it was created by the human expert that
designed the fuzzy logic controller and we evolve the
membership functions with a genetic algorithm.

The chromosome is created by encoding the real values of
the numbers that define the membership functions of the
input and output variables as described in fig. 1.

1a 2a 3a 4a 5a

1a 2a 3a 4a 5a

6a

6a

7a

7a

8a

8a

9a

9a

10a

10a

na

na

1−na

1−na2−na

2−na

……

Input Membership Functions Output Membership Functions

Chromosome
Fig. 1 Chromosome created by the membership functions

Each input and output variable is encoded as an array Cini

where i=1,…, number_of_input_variables, and each output
variable is encoded as Coutj where j=1,…,
number_of_output_variables. The overall chromosome has
the following form:

][ji CoutCinC = . (7)

The length of the chromosome is related to the number and
the type of the membership functions of the input and output
variables and to their number. An initial population is created
and each individual, which is a fuzzy logic controller, of a
single generation is tested in the same experiment. After the
completion of the experiments the performance of each
individual is evaluated based in the fitness function used, and
the individuals are ranked. For the selection process a
roulette wheel with slots according to fitness is used, as
described in [17]. After that the crossover is performed and
mutation of the final population. In all the experiments
performed the variables of the genetic algorithm like the
crossover and the mutation probability are the same. This has
as a result all the variations in the behaviors of different
controllers to attribute to the different type of fitness
functions.

IV. CUSTOM ROBOT VEHICLE

There is a lot of argument about using simulation or

experiments in real robots for the evolution of their
controllers. Some researchers propose the use of simulators
to initially evolve the controllers and then validate them in
real robots. We believe that although simulation has proven
to be a useful tool for the evolution of robot controllers, the
evolution in real robot can incorporate factors that a
simulation, no matter how accurate it is, cannot consider. For
this reason we have designed and developed a low cost robot
that allows to experimentate and validate our approach.

All the work presented in this manuscript has been done
on a real robot. We will briefly describe the robot’s parts as
long as the essential software developed for control and
sensor processing.

The basic part of the mobile robot is consisted by the

3870

Rogue Blue educational robot. Several modifications were
made and new sensors and devices were added since the
minimal configuration of the initial platform wasn’t suitable
for experimentation. The sensor suite of the robot is
consisted from a sonar range device positioned in the center
in the upper front part and two infrared sensors positioned in
the lower left and right part of the vehicle. It has two
odometers one in each wheel and an electronic compass in
the upper center part. The two wheels of the robot are
rotating from one servo motor each. The low level control of
the servo motors and the data acquisition from the sensors
and the other devices is performed from a board equipped
with an OOPic microprocessor. The robot has a Bluetooth
device which allows the communication of the robot with a
host computer that has a Bluetooth base station attached. The
robot is also equipped with a device from Digital Solutions
that allows inter-robot communication without the
intervention of a base station in cases that the experiments
require more than one robot. The configuration of the devices
with which the robot is equipped is presented in fig. 2.

Controller Board

Bluetooth
Communication

Device
Sonar Sensor

Servo Motors

Infrared Sensors

Odometers

Batteries

FWCM Communication
Device Compass

Front
View

Side
View

Fig. 2 Configuration of the devices attached in the custom robotic

vehicle

The OOPIC board is running a program which allows the
low level control of the devices and data acquisition from the
sensors. In a base station a MATLAB session is running and
it’s exchanging data with the robot. The position calculation,
the fuzzy logic controller and the genetic algorithm are
running in the base station. It should be noted that although
the configuration is a host / slave system, conceptually the
robot is considered as an autonomous agent.

For the calculation of the robot’s position the data from the
odometers are used. The position of the robot is calculated
based on the equations presented in [13] for this specific type
of robot.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments conducted in an area with maximum

width of 3.7 meters and maximum length of 4.5 meters. The
floor was covered with carpet, in order to minimize the
sliding effect. The experimentation area and the real robot
are presented in fig. 3.

For each fitness function type, we evolved the controllers
for 80 generations, using the same experimental set up. In

each generation the goal of the robot was to navigate from an
initial point to a final target point. The environment is static
with obstacles in predefined positions. Each individual had
30 seconds to accomplish its goal and after that the
experiment was terminated and the robot was repositioned.

Fig. 3 Experimental testbed

An additional parameter was added to the fitness functions

mainly because the experiments were performed in a real
robot. This parameter takes into account the activation level
of each sensor. In case that the mean activation level is less
than 0.3 (experimentally derived) a penalty value was
assigned to the fitness functions of the specific individual.
That was done to avoid cases in which the robot has stuck to
an obstacle and therefore could not complete the experiment.
Obviously all individuals who fall in this category have
limited chances to survive.
The evolved controllers were tested for various navigation
conditions and scenarios. Four different sets of experiments
were conducted, and each individual had one minute to go as
close as possible to a target point. Several parameters
concerning the robot movement were monitored. Some of
them are shown in Table I for the best individuals of each
type of fitness function. The trajectories followed by the best
individuals, in certain test cases are presented in Fig. 4 – 7.

TABLE I
EXPERIMENTAL RESULTS

Test Case 1 Aggregate Behavioral Tailored
Minimum Distance (mm) 63,8980 65,4110 47,8566
Time (sec) 27,9322 30,5126 27,7254
Mean Sensor Activation 0,8744 0,8642 0,8799
Turn Rate 3,7337 3,1252 2,7086
Mean Lin. Vel. (cm/sec) 9,39702 8,90375 9,42322
Test Case 2
Minimum Distance (mm) 41,8505 59,1457 42,6037
Time (sec) 42,7507 30,5774 42,1305
Mean Sensor Activation 0,8926 0,8031 0,8880
Turn Rate 3,5242 3,6257 3,6288
Mean Lin. Vel. (cm/sec) 9,21670 9,00040 9,19336
Test Case 3
Minimum Distance (mm) 41,8505 59,1457 42,6037
Time (sec) 42,7507 30,5774 42,1305
Mean Sensor Activation 0,8926 0,8031 0,8880
Turn Rate 3,5242 3,6257 3,6288
Mean Lin. Vel. (cm/sec) 9,21670 9,00040 9,19336
Test Case 4
Minimum Distance (mm) 125,3659 110,7722 122,1138
Time (sec) 41,07354 40,2912 44,62946
Mean Sensor Activation 0,816438 0,81505 0,82027
Turn Rate 8,042438 7,78897 7,21267
Mean Lin. Vel. (cm/sec) 8,254323 8,152524 7,998842

3871

-200 0 200 400 600 800 1000 1200 1400 1600
-500

0

500

1000

1500

2000

2500

Aggregate

Behavioral
Tailored

Fig. 4 Test Case 1

0 500 1000 1500 2000

0

500

1000

1500

2000

Aggregate

Behavioral
Tailored

Fig. 5 Test Case 2

In order to measure the overall behavior of the controllers

we introduce a metric of the efficiency of the robot's
performance. The efficiency metric is given by:

}{max}{max
}{min}{min

C

i

C

i

i

C

i

C

MLV
MLV

MSA
MSA

T
T

MD
MD

EF(i) +++=

(8),

where, MD is minimum distance to target, MST is the time
needed for the minimum distance, MSA is the mean sensor
activation, MLV is the mean linear velocity, c=1,…i is the
group of robot controllers considered. The performance of
each fitness type for all test cases is presented in Table II.

TABLE II
EFFICIENCY OF THE FITNESS FUNCTION TYPE FOR EACH TEST

CASE
 Test Case 1 2 3 4

Aggregate 3,732 3,715 3,837 3,859
Behavioral 3,567 3,583 3,816 3,981

EF

Tailored 4 3,700 3,681 3,778

In order to identify which fitness is affecting certain
attributes of the robots performance, we conduct the
following analysis. We calculate the mean EF of each
function in all test cases by excluding in each case one factor
i.e minimum distance from target.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-400

-200

0

200

400

600

800

1000

1200

1400

1600

Aggregate

Behavioral
Tailored

Fig. 6 Test Case 3

-500 0 500 1000 1500 2000

0

500

1000

1500

2000

Aggregate

Behavioral
Tailored

Fig. 7 Test Case 4

The cases that we examine are:

Case 1:
i

C

MD
MD

iEF
}{min

)(− , (9)

Case 2:
i

C

T
T

iEF
}{min

)(− , (10)

Case 3:
}{max

)(
C

i

MSA
MSA

iEF − , (11)

Case 4:
}{max

)(
C

i

MLV
MLV

iEF − , (12)

The results are presented in Table III.

TABLE III
EFFICIENCY FACTOR'S ANALYSIS

 Aggregate Behavioral Tailored
EF 3,786 3,737 3,790
Case 1 2,878 2,918 2,836
Case 2 2,905 2,760 2,930
Case 3 2,789 2,769 2,793
Case 4 2,787 2,764 2,812

 In all cases except case 1, the tailored fitness function
outperforms the aggregated which is followed by the

3872

behavioral. In genera, it seems that the most suitable fitness
for this task is the tailored one. The case which behavioral
outperforms the others was case 1. This is probably due to
the fact that there was no variable measuring the distance,
from the target in the behavioral fitness. The other two types
of functions had this kind of metric which led the evolution
process in a more target oriented.

VI. DISCUSSIONS AND CONCLUSIONS

Fuzzy logic controllers without appropriate tuning

represent a pure reactive solution for the mobile robot
navigation problem. Therefore, evolution processes have
been extensively used to optimize the structural
characteristics (mainly membership functions and rules) of
fuzzy controllers. In these cases, the performance of the
evolved controller is heavily based on the selected fitness
function.

In this paper we examine the impact of the selection of the
fitness function on the evolution of a fuzzy logic controller,
together with the navigation performance of a real robotic
vehicle. We used different types of fitness functions, namely,
aggregate, behavior and tailored, that represent different
evolution approaches. In order to evaluate the performance of
the evolved controllers and investigate how fitness functions
affect the overall behavior of the vehicle we introduced the
efficiency factor metric. From the experiments conducted, it
turned out that the “tailored” type function is more
appropriate for the navigation problem in static
environments.

Future research will include the formulation of a metric for
the measurement of the efficiency of the performance of a
team of robot vehicles. We also anticipate studying the
effects of fitness function selection on controllers that avoid
dynamically moving obstacles.

VII. ACKNOWLEDGMENT

L. Doitsidis was supported from “Herakleitos” fellowships

for research from the Technical University of Crete EPEAEK
II 88727. The authors would like to thank S. Piperidis and C.
Anastasopoulos for their help.

REFERENCES

[1] N. C. Tsourveloudis, L. Doitsidis, K. P. Valavanis,

“Autonomous Navigation of Unmanned Vehicles: A
Fuzzy Logic Perspective,” in Cutting Edge Robotics, V.
Kordic, A. Lazinica, M. Merdan, Eds. Mammendorf,
Germany: Pro Literatur Verlag, 2005, pp. 291-310.

[2] X. Yang, M. Moallem, R. V. Patel, “A layered Goal-
Oriented Fuzzy Motion Planning Strategy for Mobile
Robot Navigation,” IEEE Trans. Syst., Man, Cybern., B,
vol. 35, no. 6, pp. 1214-1224, Dec. 2005.

[3] P. Resu, E. M. Petriu, T. M. Whalen, A. Cornell, H. J.
W. Spoelder, “Behavior-Based Neuro-Fuzzy Controller

for Mobile Robot Navigation,” IEEE Trans. Instrum.
Meas., vol. 52, no. 4, pp. 1335-1340, Aug. 2003.

[4] N. C. Tsourveloudis, K. P. Valavanis, T. Hebert,
“Autonomous Vehicle Navigation Utilizing Electrostatic
Potentional Fields and Fuzzy Logic,” IEEE Trans.
Robotic. Autom. vol. 17, no. 4, pp. 490-497, Aug. 2001.

[5] C. Ye, N. H. C. Yung, D. Wang, “A Fuzzy Controller
With Supervised Learning Assisted Reinforcement
Learning Algorithm for Obstacle Avoidance,” IEEE
Trans. Syst., Man, Cybern., B, vol. 33, no. 1 pp. 17-27,
Feb. 2003.

[6] S. –I. Lee, S. –B. Cho, “Emergent Behaviors of a Fuzzy
Sensory-Motor Controller Evolved by Genetic
Algorithm,” IEEE Trans. Syst., Man, Cybern., B, vol. 31,
pp. 919-929, Dec. 2001.

[7] S. H. Kim, C. Park, F. Harashima, “A Self-Organized
Fuzzy Controller for Wheeled Mobile Robot Using an
Evolutionary Algorithm,” IEEE Trans. Ind., Electron.,
vol. 48, no. 2, pp. 467-474, Apr. 2001.

[8] H. Hagras, V. Callaghan, M. Colley, “Learning and
adaptation of an intelligent mobile robot navigator
operating in unstructured environment based on a novel
online Fuzzy-Genetic system,” Fuzzy Set. Syst., vol. 141,
pp. 107-160, 2004.

[9] F. Hoffman, G. Pfister, “Evolutionary Design of a Fuzzy
Knowledge Base for a Mobile Robot,” Int. J. Approx.
Reason., vol. 17, no. 4, pp. 447-469, 1997.

[10] V. Matellan, C. Fernadez, J. M. Molina, “Genetic
Learning of Fuzzy Reactive Controllers,” Robot Auton.
Syst., vol. 25, pp. 33-41, 1998.

[11] D. P. T. Nanayakkara, K. Watanabe, K. Kiguchi, K.
Izumi, “Evolutionary Learning of a Fuzzy Behavior
Based Controller for a Nonholonomic Mobile Robot in a
Class of Dynamical Environments,” J. Intell. Robot.
Syst., vol. 32, pp. 255-277, 2001.

[12] S. Nolfi and D. Floreano, Evolutionary Robotics: The
Biology, Intelligence, and Technology of Self-
Organizing Machines. Cambridge, Massachusetts: MIT
Press, 2000.

[13] J. Borenstein, H. R. Everett, L. Feng, “Where Am I?
Sensors and Methods for Mobile Robot Positioning,”
Univ. Michigan, Ann Arbor, MI, 1996.

[14] L. Doitsidis, A. L. Nelson, M. T. Long, K. P. Valavanis,
R. R. Murphy, “Experimental Validation of a MATLAB
Based Control Architecture for Mobile Robot Outdoor
Navigation,” In Proc. 13th IEEE Med. Conf. Control
Automation, Limassol, Cyprus, 2005, pp. 1499-1505.

[15] D. Floreano, F. Mondana, “Evolution of homing
navigation in a real mobile robot,” IEEE Trans. Syst.,
Man, Cybern., B, vol. 26, no. 3, pp. 396-407, Jun. 1996.

[16] O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena,
Genetic Fuzzy Systems: Evolutionary Tuning and
Learning of Fuzzy Knowledge Bases. Singapore: World
Scientific, 2001.

[17] Z. Michalewicz, Genetic Algorithms+Data
Structures=Evolution Programs. Heidelberg: Springer-
Verlag, 1994.

3873

