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Abstract - This paper presents a system architecture for an 

integrated airborne surveillance system that allows Unmanned 
Aerial Vehicles (UAVs) to serve as autonomous sensing 
platforms. The proposed architecture consists of the 
communications, autonomous navigation and machine vision 
modules enabling the UAV to move into targeted locations, 
acquire and evaluate collected data while remaining in contact 
with the ground control station (GCS). The overall UAV system, 
although capable of operating fully autonomously, it also retains 
the option of semi-autonomous operation or even ground 
monitored teleoperation.  
 
Index Terms—Autonomous UAV, Machine vision, Surveillance.  

I. INTRODUCTION 

THE role of airborne surveillance, whether autonomous, 
semi-autonomous or teleoperated, has been proved to be 

important and applicable to a wide range of applications such 
as search and rescue missions, border security, resource 
exploration, wildfire and oil spill detection. Until recently, 
common practice has been to use manned aircraft equipped 
with special sensors and to assign the actual recognition task 
(surveillance) to the crew or record image data and analyze 
them off-line on the ground [1]. In the exceptional cases 
where UAVs are used, they have been treated as sensor 
carrying platforms transmitting data to a GCS for analysis, 
since the involved UAVs lacked the ability of local on-board 
intelligence for data interpretation [2]. In addition, the 
absence of autonomous navigation couples tightly the UAV 
to the GCS.  

The architecture presented in this paper addresses the 
UAV’s dependency on the GCS for navigation and data 
interpretation, however it makes no assumption on how the 
UAV actually operates (autonomously or teleoperated). In 
essence, a navigation module and a machine vision system 
enable the UAV to fly over a specified (targeted) area while 
avoiding obstacles, acquire data and interpret them in real 

time, followed by decision making in terms of signaling an 
alarm or altering its course to get a better view of the targeted 
area. The whole process may be monitored from the GCS via 
the communication subsystem. The overall architecture of the 
automated surveillance system is shown in Fig.1, where the 
UAV may operate within the spectrum ranging from 
manually remote controlled system to a completely 
autonomous sensing agent. 
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As shown in Fig.1, there are two separate links to 
accommodate communication needs: the satellite link that 
provides required bandwidth for image transmission, and the 
RF link that is mainly used for flight parameter and control 
signal monitoring and adjustment. The two links are 
complementary to each other and either one may be used in 
case the other fails or it is unavailable.  

The GCS receives data through the communication module 
that include the alert signals from the UAV. The flight is also 
monitored through the same module, and control is 
transferred completely to the GCS should it be necessary.  

The UAV is guided to the specified observation area using 
autonomous navigation. The development of this subsystem 
is based on a neuro-fuzzy controller that constantly evaluates 
readings from the on board flight instruments and makes the 
appropriate adjustments to maneuver the UAV into desired 
position. The navigation system is also integrated with the 
machine vision system enabling the execution of predefined 
maneuvers to be triggered by the situation detected.  

The integration of the navigation and communication 
module allows the ground operating crew to assert control of 
the flight at any time. The flight can be autonomous or semi-
autonomous according to the requirements of each 
application or mission.  

The rest of the paper is organized as follows. In the second 
section the Machine Vision Module is presented. Its 
description starts with an overview of the module, continues 
with the noise reduction, the feature extraction and 
classification subsystems and it concludes with some remarks 
on the computational complexity of the used algorithms. Also 
presented in section II, is an example of the module’s 
function. Section III concludes the paper with some remarks 
on the issues that remain to be addressed in the future. 

II. MACHINE VISION MODULE 

A. Overview  
The heart of the proposed automated surveillance system 
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Fig.1: The architecture of the proposed integrated surveillance system  

 
is the machine vision module. It consists of three 
components: 

1. Noise reduction component 
2. Feature extraction component 
3. Feature vector classification component 

 
The image is an 8-bit grayscale bitmap acquired by an 

Infrared (IR) or a Near Infrared NIR camera. It is subjected 
to preliminary image processing, namely gauss filtering, for 
noise reduction purposes. The size and the mean intensity of 
the various regions appearing on the image are then selected 
as image features as shown in Fig.2. 

 

 
Fig.2: The block diagram of the machine vision module 
 

The feature extraction from an image generates the feature 
vectors that are evaluated by the classifier. The classifier 
examines each feature vector and calculates the possibility of 

being the target defined by the application (e.g. a forest fire). 
If the assigned possibility of an area represented by a feature 
vector remains high for an adequate period of time, then the 
alarm is set on and the alarm signal is transmitted to the 
ground station. 

Notice that due to the nature of the image sensors (IR/NIR 
camera) the data are a representation of the energy emitted by 
the various objects in the electromagnetic spectrum from 
1µm to 14µm. These objects, especially those with a strong 
signature in the 3µm to 14µm band [3], are thermal sources 
that are likely to be the application objectives.  
 

B. Noise Reduction 
The image acquired by any camera is subject to noise. In 

order to avoid the undesirable side effects of noise such as 
misclassification, a spatial gaussian filter [4], [5] is used to 
suppress it. The use of this module is optional and depends 
heavily on the quality of the utilized camera. 

C. Feature Extraction 
A very important task in the whole surveillance process is 

to define the target that the system should look for and to 
select the features describing it in an almost unique manner. 
The region mean intensity as well as the region size are good 
candidates for features, because usually the regions of the 
image that correspond to the application’s target have 
different intensity values than their surroundings. For 
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example in an application regarding forest fire detection, 
targets that are trees on fire, are shown on the image as 
regions with higher mean intensity [3], which is defined as 
follows: 

 

region  thein pixels ofnumber 

__
intensity  Mean region  pixel 

∑
∈∀=

pixelofgrayvalue
    (1) 

 
Having chosen the vector features, all that remains is to 

extract them from the image. This is done using a region-
growing algorithm [4] described below.  

At first, points that will serve as seed points for the growing 
of the regions are selected. Such are all the pixels that are 
local maxima and exceed a certain high grayscale value (e.g. 
190). This is based on the assumption that objects of interest 
appear brighter on the image. Having selected the seed 
points, the algorithm attempts to grow a region around each 
one of them by merging into the region any adjacent pixel 
whose intensity that does not deviate more than a given value 
from the intensity of the respective seed point. In other words 
the conditions for the annexation of a pixel p with intensity 
value g by a region S are: 

 
|g-g(seed point)| < D               (2) 
p is 8-connected with a pixel belonging to the region S (3) 

 
where g(seed point) is the intensity value of the 
corresponding seed point and D is a constant. 

This procedure is repeated until all pixels are assigned to 
some region. When this concludes, a series of feature vectors 
is created containing information for every region. 

D. Feature Vector Classification  
The development of the feature vector classifier is based on 

fuzzy logic. The choice of the fuzzy logic classifier is 
preferred for its simplicity and for the direct way in which it 
incorporates the experience into the structure of the classifier. 
It allows for easy changes on the system’s behavior by fine-
tuning the rule base or the membership functions that fuzzify 
the input variables, thus, making the system capable of 
adjusting to a variety of targets without much difficulty. 

 

 
Fig.3: Block diagram of the feature vector classification subsystem. 

 
The process of classifying the feature vectors is shown in 

Fig.3. At first the elements of each vector are assigned a 
membership function. This is done according to the nature of 
each feature and to specific target considerations. For 
example, as illustrated in Fig.4, the mean intensity feature is 
fuzzified to Low, Mid and High while referring only to the 
above 190 range of the grayscale values under the 
assumption that the target appears bright on the image. Recall 
that the image is an 8-bit grayscale so the intensity of the 
pixels takes 28 distinct values ranging from 0 (black) to 255 
(white). Similarly, the size feature is divided to three 
linguistic variations Small, Medium and Large, respectively, 
as shown in Fig.5. Notice that the values on the x-axis 
depend heavily on the total number of pixels on the image 
and on the specific target. In this case the target is expected 
within the range of 20 to 200 pixels. 

After completing the “fuzzification” process, the results 
are evaluated through a rule based inference engine. These 
rules are the ones that will determine the output of the system 
and therefore decide upon the presence or the absence of a 
target in the area. Rules are stated in the well known IF 
THEN form:  

 
IF Mean Intensity is High AND Size is Medium 
THEN Target ID possibility is High. 
 
The output variable is the target identification possibility 

and its membership functions are depicted in Fig.6. After 
examining the rules and applying the aggregation method 
(max), the defuzzification process yields a number that 
classifies each region into one out of three different classes. 
If the output possibility is lower than 0.5 then the region, 
whose feature vector produced that result, has LOW 
possibility of being the designated target. A MEDIUM 
possibility classification occurs when the output is between 
0.5 and 0.75, while HIGH possibility is assigned to those 
regions that produce an output higher than 0.75. The output 
of the system in respect to the input variables is shown in Fig. 
7. A result of such a classification on a test image is 
presented in Fig. 8. 

E. Persistence and Alarm Raising 
Usually there are some random events, such as reflections 

or noise that can trigger an alarm by inducing into the image 
bright regions that do not actually correspond to a thermal 
source. Assuming that such events are small in duration, 
which is mostly the case, the frequency of such 
misclassifications may be reduced by introducing a sort of 
duration or time threshold. Under this condition, a region 
must produce a high possibility over several frames before it 
is considered as valid indication for the existence of the 
target.  

When a region of the image is persistently classified as of 
a high possibility, then an alarm signal is transmitted both to 
the ground station through the communication module and 



 4

directly to the autonomous navigation module. Also, images 
of the region are sent along with ordinary flight telemetry 
data. 

 

 
Fig.4: The Mean Intensity membership functions  
 

 
Fig.5: Membership functions of the Size of Region feature. 
 
 

 
Fig.6: The membership functions for the output variable target identification 
possibility 

 

 
Fig.7: The output of the Fuzzy Classifier in respect to the input. 
 

Along with the alarm signal, the coordinates of the thermal 
source that has been classified as the suspected target are 
computed. The coordinates of the thermal source are derived 
from the image using the well-known perspective projection 
model [4] [5] under which the coordinates of a point in a 
three dimensional space (X, Y, Z) is projected on the image 
plane at (x, y) as follows  

      
Z
Xfx = ,             (4) 

     
Z
Yfy =  ,             (5) 

where f is the focal length of the camera’s lens. Solving for X 
and Y yields respectively: 

      ,
f
xZX =              (6) 

     
f
yZY = .             (7) 

Given that x and y are the image’s plane coordinates, the 
actual 3D coordinates of the suspected target could be 
calculated, by using equations (6) and (7), assuming that 
there is some information about Z. This information is either 
provided by a laser scanner mounted on the UAV or may be 
extracted from a digital elevation map of the region that the 
UAV is flying above. In the absence or failure of the above, a 
rough estimation is possible assuming that: 

1. Every point visible to the camera is about as far 
from the camera as any other 

2. The distance from the ground can be approximated 
by the UAV’s altimeter. 

These assumptions are valid for a narrow Field of View lens 
and an UAV flight close to the sea level. When they hold, the 
Z coordinate of every point projected on the image plane is 
approximated by the value of the altitude. 

The preceding analysis is further based on the assumption 
that the world coordinates system coincides with the camera 
coordinates system. As a result of that, the position of the 
region is estimated relatively to the UAV. Further 
localization on a map is possible using the information about 
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the UAV’s position provided by the altimeter and the on 
board GPS. 

F. Image Compression 
The presentation of this subsystem has been intentionally 

left last because it does not participate in the process of data 
interpretation. Its presence is solely dictated by reasons 
regarding the efficient use of the communication channel. So, 
the images that the ground station receives are compressed 
versions of the ones processed onboard the UAV. 

G.  Complexity 
Dealing with two-dimensional images, may be 

computationally intensive. However, in this case, the 
algorithms used by the machine vision module, namely the 
noise reduction and region growing, did not exceed the order 
of O(n2) in complexity, with n being the dimension of a 
square image (nxn). Also, under the current implementation, 
the fuzzy classifier is found to have its own complexity 
depending mainly on the product of the number of features 
(n) and the number of rules in its inference engine (m). So, it 
can be said that it is of order O(nxm).  

Although one can argue that O(n2) algorithms do not scale 
nicely, the various tests, that the system has been subjected 
to, showed that, for images of resolution up to 320x200 
pixels, real time or near real time performance can be 
achieved on average commodity hardware. This resolution is 
found on the most mid valued IR cameras available today and 
it is sufficient for most applications. 

 

 
Fig.8: A sample image showing the classification of various regions. 

 

III. CONCLUDING REMARKS 
The development of a platform under the architecture 

presented here is at experimental stage. Several issues remain 
to be addressed in practice such as low level interfacing 

between the modules. Also the intelligent system that has the 
role of identifying targets must be enhanced to include a 
learning mechanism, which will allow it to gain experience 
and perform more accurate recognition over time. 
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